Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Using light to rearrange macroscopic structures
by Staff Writers
Onna, Japan (SPX) May 30, 2017


These are Transmission Electron Microscopy images of the self-assembling nanostructures, also visible to the naked eye. Credit OIST

Traditional chemistry is immensely powerful when it comes to producing very diverse and very complex microscopic chemical molecules. But one thing out of reach is the synthesis of large structures up to the macroscopic scale, which would require tremendous amounts of chemicals as well as an elaborate and complicated technique.

For this purpose, scientists rely instead on "self-assembling" molecules, compounds that can interact with other copies of themselves to spontaneously congregate into spheres, tubes or other desired shapes. Using this approach, researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) now reports in Chemical Communications new self-assembling molecules that can transform into novel, exotic and previously unobserved shapes by simply using UV light to force them to rearrange differently into "metastable" states.

When designing self-assembly structures, scientists typically aim for the state of lowest energy - or "ground state," in which the structure would be at its highest stability. Less stable shapes are usually dismissed as incorrect and undesirable. However, this "ground state" being very stable makes it arduous to break down the structure if you wish to alter its shape.

In this research, OIST scientists inserted a weakness into their ground-state self-assembled structures, resulting in structures requiring only a small nudge to collapse. In this case, the nudge is the use of ultraviolet light to snip a specific bond between two atoms within the molecule, splitting the structure into smaller fragments. The fragments are then able to co-assemble into less stable - called metastable - but novel and exotic shapes.

"This report is about a new concept in material science," explained Prof. Zhang from the Bioinspired Soft Matter Unit and author of the study. "We converted a self-assembling phenomenon into co?assembling in a spatially and temporally controllable manner using light. Eventually, we constructed exotic heterogeneous nanostructures inaccessible though conventional synthetic path."

This new concept led to a fascinating discovery: because the remaining fragments are tightly packed following the collapse from the initial structure, they can form novel and exotic structures which are not attainable if you just mix the same molecules in free motion. Imagine these nanostructures made from Lego bricks: initially you have 2x5 bricks - 2 studs wide and 5 studs long - self-assembling into a nanofiber. Ultraviolet light will split these 2x5 bricks into two smaller pieces, for example a 2x3 brick and a 2x2 brick, destroying the entire fiber-like structure.

But because these smaller bricks remain pre-organized spatially staying close to each other, they can easily recombine themselves into new shapes visible with the naked eye. In contrast, if in a separate experiment you just mix 2x3 and 2x2 Lego bricks in a random manner in a bucket with varying distances between bricks, their lack of spatial organization prevents the assembly of such novel nanostructures.

According to Prof. Zhang, the ability to create new structures is vital: "In material science, the function is always related to the structure. If you create a different structure, you manipulate the function and even create new applications." For example, the toxicity of a molecule in a nanofiber shape might be much lower or higher than the same molecule assembled in a spherical shape."

The present research performed at OIST strongly suggests the initial conditions are the most critical parameter influencing the final shape taken by self-assembling molecules. "If you know how the molecules pack with each other from the parameters of the initial state, then it will give you more clues to aim towards a specific macroscopic shape," commented Prof. Zhang.

This shapeshifting ability holds great potential for biological applications. Prof. Zhang suggested, "For example you introduce the molecule into a living organism and it adopts a certain structure. Then using light, you break a chemical bond and then the molecule will switch to another structure with the function you want."

In pharmaceutical design, such a concept would allow a drug to reach its target in a living organism - an organ or a tumor - in an inactive state, thus limiting potential side effects. Once broken down in this targeted location, the drug would reshape itself into a different structure with therapeutic activity.

Prof. Zhang concluded, "For now, using ultraviolet light as we do is not ideal as it is toxic for living cells. The next step for us is to move towards more biocompatible self-assembling structures with better adaptability to living systems."

Research paper

TECH SPACE
Self-ventilating workout suit keeps athletes cool and dry
Boston MA (SPX) May 24, 2017
A team of MIT researchers has designed a breathable workout suit with ventilating flaps that open and close in response to an athlete's body heat and sweat. These flaps, which range from thumbnail- to finger-sized, are lined with live microbial cells that shrink and expand in response to changes in humidity. The cells act as tiny sensors and actuators, driving the flaps to open when an athlete w ... read more

Related Links
Okinawa Institute of Science and Technology
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
First Year of BEAM Demo Offers Valuable Data on Expandable Habitats

NASA honors Kennedy's space vision on 100th birthday

Conch shells may inspire better helmets, body armor

MIT researchers engineer shape-shifting food

TECH SPACE
Dream Chaser Spacecraft Passes Major Milestone

Dragon Spacecraft Prepared to Resupply International Space Station

NASA's Space Launch System Engine Testing Heats Up

Successful launch puts New Zealand in space race

TECH SPACE
Halos discovered on Mars widen time frame for potential life

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Preparations Continue Before Driving into 'Perseverance Valley'

TECH SPACE
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

TECH SPACE
Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

Government space program spending reaches 62B dollars in 2016

New Target Date for Second Iridium NEXT Launch

TECH SPACE
Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

Strathclyde-led research develops world's highest gain high-power laser amplifier

Atomic structure of irradiated materials is more akin to liquid than glass

Using light to rearrange macroscopic structures

TECH SPACE
Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

Russia thinks microorganisms may be living outside the space station

The race to trace TRAPPIST-1h

Water forms superstructure around DNA, new study shows

TECH SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement