Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Updated computer code improves prediction of particle motion in plasma experiments
by Staff Writers
Plainsboro NJ (SPX) Aug 16, 2017

PPPL physicist Mario Podesta. Image courtesy Elle Starkman

A computer code used by physicists around the world to analyze and predict tokamak experiments can now approximate the behavior of highly energetic atomic nuclei, or ions, in fusion plasmas more accurately than ever. The new capability, developed by physicist Mario Podesta at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), outfits the code known as TRANSP with a subprogram that simulates the motion that leads to the loss of energetic ions caused by instabilities in the plasma that fuels fusion reactions. The code, whose name is derived from the term "transport," is housed at PPPL.

Podesta modeled the highly energetic ions that are used to heat the plasma. These particles, which physicists inject as neutral atoms, are ionized inside the plasma and increase its thermal energy. The model could also apply to fusion-generated energetic particles in future tokamaks.

Physicists need to predict and minimize the loss of these ions from the plasma in doughnut-shaped facilities called tokamaks to achieve a high level of performance. Sudden loss can halt fusion reactions and damage plasma-facing components. Predicting and controlling heat loss will be crucial for ITER, the international tokamak under construction in France, in which temperatures are to reach 150 million degrees Celsius, or 10 times the heat at the core of the sun.

Podesta's results build on research he conducted in 2015. "The original work with my model focused on reproducing, modeling, and interpreting results from existing experiments," he said. "This new work explores the possibility of using that same model to predict energetic particle transport in future experiments."

The revision, reported in July in the journal Plasma Physics and Controlled Fusion, employs a subprogram called a "kick model" to simulate the movement of fast ions caused by instabilities in the plasma. The kick model captures only the minimum amount of physics necessary to simulate this specific phenomenon.

The subprogram enables the completion of calculations in a matter of hours, rather than weeks or months. Using the kick model means sacrificing some accuracy, but it allows researchers to get results more quickly. "That's the trade-off," Podesta said. Support for this research comes from the DOE's Office of Science (Fusion Energy Sciences).

Podesta tested his modified version by comparing it with data produced by PPPL's National Spherical Torus Experiment (NSTX) prior to its upgrade. The modified code predicted levels of energetic particle transport that agreed with the NSTX experiments.

The new approach suggests that with further modifications, such forecasts can be made more reliable with just a limited increase in computing time. "The question before this research was whether we can predict what will happen in future experiments, with a minimum amount of prior information," Podesta said. "It now appears that we can, and these favorable results motivate further improvements to the model."

Research paper

First basic physics simulation of impact of neutrals on turbulence
Plainsboro NJ (SPX) Jul 25, 2017
Turbulence, the violently unruly disturbance of plasma, can prevent plasma from growing hot enough to fuel fusion reactions. Long a puzzling concern of researchers has been the impact on turbulence of atoms recycled from the walls of tokamaks that confine the plasma. These atoms are neutral, meaning that they have no charge and are thus unaffected by the tokamak's magnetic field or plasma ... read more

Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Disruptioneering: Streamlining the Process of Scientific Discovery

NASA Offers Space Station as Catalyst for Discovery in Washington

Two Voyagers Taught Us How to Listen to Space

A look inside the Space Station's experimental BEAM module

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

SpaceX Sets August 14 Launch Date for Next US Resupply Mission to ISS

Dragon to be packed with new experiments for International Space Station

NASA taps BWXT for reactor design for future Mars missions

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Curiosity Mars Rover Begins Study of Ridge Destination

China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Airbus DS to expand cooperation with Russia

UK space companies to develop international partnerships

BAE Systems reveals iMOTR radar system

Machine learning could be key to producing stronger, less corrosive metals

NASA Tests Autopilot Sensors During Simulations

Active machine learning for the discovery and crystallization of gigantic polyoxometalate molecules

A New Search for Extrasolar Planets from the Arecibo Observatory

Gulf of Mexico tube worm is one of the longest-living animals in the world

Molecular Outflow Launched Beyond Disk Around Young Star

Unexpected life found at bottom of High Arctic lakes

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Twilight observations reveal huge storm on Neptune

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement