. 24/7 Space News .
TIME AND SPACE
Unveiling the quantum necklace
by Staff Writers
Onna, Japan (SPX) May 30, 2017


The number of pearls in the quantum necklace depends on the strength of the spin-orbit coupling. A stronger coupling produces more pearls, and the number must always be odd. Image courtesy Okinawa Institute of Science and Technology Graduate University.

The quantum world is both elegant and mysterious. It is a sphere of existence where the laws of physics experienced in everyday life are broken--particles can exist in two places at once, they can react to each other over vast distances, and they themselves seem confused over whether they are particles or waves.

For those not involved in the field, this world may seem trifling, but recently, researchers from the Okinawa Institute of Science and Technology Graduate University (OIST) have theoretically described two quantum states that are extraordinary in both the physics that define them and their visual appeal: a complex quantum system that simulates classical physics and a spellbinding necklace-like state. Their study is published in the journal Physical Review A.

The quest for these states begins with a doughnut, or rather, a doughnut-shaped container housing a rotating superfluid. This superfluid, which is a fluid that moves with no friction, is made of Bose-Einstein condensates (BECs) comprising particles with no charge that are cooled to near-zero degrees kelvin, a temperature so cold, that it does not exist in the universe outside of laboratories. At this temperature, particles begin to exhibit strange properties--they clump together, and eventually become indistinguishable from one another. In effect, they become a single entity and thus move as one.

Since this whirling BEC superfluid is operating at a quantum scale, where tiny distances and low temperatures reign, the physical characteristics of its rotation are not those seen in the classical world. Consider a father who is swinging his daughter around in a circle by the arms. Classical physics mandates that the child's legs will move faster than her hands around the circle, since her legs must travel further to make a complete turn.

In the world of quantum physics the relationship is the opposite. "In a superfluid...things which are very far away [from the center] move really slowly, whereas things [that] are close to the center move very fast," explains OIST Professor Thomas Busch, one of the researchers involved in the study. This is what is happening in the superfluid doughnut.

In addition, the superfluid inside of the doughnut shows a uniform density profile, meaning that it is distributed around the doughnut evenly. This would be the same for most liquids that are rotating via classical or quantum rules. But what happens if another type of BEC is added, one that is made from a different atomic species and that cannot mix with the original BEC? Like oil and water, the two components will separate in a way that minimizes the area in which they are touching and form two semicircles on opposite sides of the doughnut container.

"The shortest boundary [between the components] is in the radial direction," Dr. Angela White, first author on the study, explains. The two components separate into different halves of the doughnut along this boundary, which is created by passing through the doughnut's radius. In this configuration, they will use less energy to remain separated than they would via any other.

In the immiscible, or unmixable, the quantum world surprises. Since the boundary between the two superfluids must remain aligned along the radial direction, the superfluid present at this boundary must rotate like a classical object. This happens in order to maintain that low-energy state.

If at the boundary the superfluids continued to rotate faster on the inside, then the two semicircles would start to twist, elongating the line that separates them, and thus requiring more energy to stay separated. The result is a sort of classical physics mimicry, where the system appears to jump into the classical realm, facilitated by complex quantum mechanical behavior.

At this stage, the superfluid doughnut has reached its first extraordinary state which is one that mimics classical rotation. But there is one more step needed to transform this already mind-boggling system into the necklace end-goal: spin-orbit coupling.

"In a very abstract way, [spin is] just a thing that has two possible states," Busch explains. "It can be this way or it can be that way." For this experiment, which involves particles that have no charge, or no spin, the researchers "faked" a spin by assigning a "this or that" property to their particles.

When coupling the particles based on this property, the two semicircles inside of the doughnut break into multiple alternating parts, thus forming the necklace configuration (Figure 2). By digging further into its composition, the researchers found that the number of "pearls" in the necklace depends on the strength of the spin-orbit coupling and, more surprisingly, that there must always be an odd number of these pearls.

Researchers have predicted quantum necklaces before, but they were known to be unstable--expanding or dissipating themselves to oblivion only a short time after being created. In this theoretical model, the OIST researchers believe they have found a way to create a stable necklace, one that would allow for more time to study it and appreciate its refined majesty.

Research paper

TIME AND SPACE
Interaction between the atomic nucleus and the electron on trial
Braunschweig, Germany (SPX) May 18, 2017
For the first time, a team of researchers under the leadership of TU Darmstadt and with the participation of scientists from the Physikalisch-Technische Bundesanstalt (PTB) has succeeded in measuring the transition between energy levels of the lithium-like ions of bismuth with such precision that it has become possible to reassess underlying theories. This has led to a surprising result. The sci ... read more

Related Links
Okinawa Institute of Science and Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
First Year of BEAM Demo Offers Valuable Data on Expandable Habitats

NASA honors Kennedy's space vision on 100th birthday

Conch shells may inspire better helmets, body armor

MIT researchers engineer shape-shifting food

TIME AND SPACE
Dream Chaser Spacecraft Passes Major Milestone

Dragon Spacecraft Prepared to Resupply International Space Station

NASA's Space Launch System Engine Testing Heats Up

Successful launch puts New Zealand in space race

TIME AND SPACE
Halos discovered on Mars widen time frame for potential life

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Preparations Continue Before Driving into 'Perseverance Valley'

TIME AND SPACE
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

TIME AND SPACE
Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

Government space program spending reaches 62B dollars in 2016

New Target Date for Second Iridium NEXT Launch

TIME AND SPACE
Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

Strathclyde-led research develops world's highest gain high-power laser amplifier

Atomic structure of irradiated materials is more akin to liquid than glass

Using light to rearrange macroscopic structures

TIME AND SPACE
Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

Russia thinks microorganisms may be living outside the space station

The race to trace TRAPPIST-1h

Water forms superstructure around DNA, new study shows

TIME AND SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.