Subscribe free to our newsletters via your
. 24/7 Space News .

University scientists unraveling nature of Higgs boson
by Staff Writers
Manhattan KS (SPX) Jul 01, 2014

A collision event recorded with the CMS detector in 2012 at a proton-proton centre-of-mass energy of 8 TeV. Each event shows characteristics expected from the decay of the SM Higgs boson to a pair of tau leptons. Such an event is characterized by the production of two forward-going particle jets - shown as green towers on opposite endcaps. One of the tau decays to a muon - in red lines - and neutrinos, while the other tau decays into a charged hadron - shown as blue towers - and a neutrino. For a larger version of this image please go here.

New physics research involving Kansas State University faculty members has helped shed light on how our universe works. A recently published study in the journal Nature Physics reports scientists have found evidence that the Higgs boson - a fundamental particle proposed in 1964 and discovered in 2012 - is the long sought-after particle responsible for giving mass to elementary particles.

"In nature, there are two types of particles: fermions and bosons," said Ketino "Keti" Kaadze, a research associate at Fermilab who in August is joining the faculty at Kansas State University's physics department.

"Fermions, quarks and leptons make up all the matter around us. Bosons are responsible for mediating interaction between the elementary particles."

Building on the full data collected in 2011 and 2012, part of which was used to identify the Higgs boson's existence, researchers see evidence that the Higgs boson decays into fermions. This also was predicted in 1964 but not observed until after the Higgs boson was identified in 2012, Kaadze said.

The observation is key in reinforcing what is theorized about the Higgs boson and is a steppingstone to building on more extensive knowledge about how the universe works, Kaadze said.

"We think that the Higgs boson is responsible for the generation of mass of fundamental particles," Kaadze said.

"For example, the electrons acquire their mass by interacting with the Higgs boson. As electrons are not massless, they form stable orbits around nuclei, thus allowing the formation of electrically neutral matter from which the Earth and all of us are made. Even slight changes of the masses of fundamental particles around us would change the universe very drastically, and the Higgs boson is the centerpiece that ties it all together."

Kaadze, along with other scientists, was part of a team that looked for the Higgs boson decaying to a pair of tau leptons - fermions that are very heavy equivalents of electrons. A second team also searched for the Higgs boson decaying into a pair of heavy fermions, called beauty quarks. These two decay signatures offer the highest discovery potential, she said.

The findings appear in the journal article, "Evidence for the direct decay of the 125 GeV Higgs boson to fermions."

Kaadze is one of the several researches in Kansas State University's physics department heavily involved in research at the European Organization for Nuclear Research, or CERN. Their research is conducted with the Compact Muon Solenoid, one of the Large Hadron Collider's two particle detectors that help scientists at CERN to search for evidence for Higgs boson.

Other Kansas State University physics faculty members involved in CERN research include Tim Bolton, professor; Andrew Ivanov, assistant professor; and Yurii Maravin, associate professor.

The Higgs boson was the last key component needed to confirm the Standard Model of particle physics: a low-energy theory that explains the workings of the universe at the smallest length scales.

Efforts are currently underway to nearly double the center-of-mass energy at CERN. Doing so will increase the ability to create Higgs bosons. In turn, scientists can build on data in an effort to explain the mysteries of the universe.

"We know that the Standard Model of physics that we have now does not explain some puzzles in nature," Kaadze said. "We know there has to be other models that can explain phenomena like dark matter and dark energy, and why we can have different generations of the same particle that are identical except for their mass. Finding the Higgs particle wasn't the end of the story. It was the starting point on a new horizon."


Related Links
Kansas State University
Understanding Time and Space

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Researchers Detect Smallest Force Ever Measured
Berkeley CA (SPX) Jul 01, 2014
What is believed to be the smallest force ever measured has been detected by researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley. Using a combination of lasers and a unique optical trapping system that provides a cloud of ultracold atoms, the researchers measured a force of approximately 42 yoctonewtons. A yoctonewton is ... read more

NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

First LDSD Test Flight a Success

Rover Has Enough Energy for Some Late-Night Work

Curiosity travels through ancient glaciers on Mars

New Type of Dust in Martian Atmosphere Discovered

Commercial Crew Partners Focus on Testing, Analysis to Advance Designs

From Deep Sea to Deep Space

Russia, China Ready to Cooperate in Space, Explore Mars

Fruit fly immunity fails with fungus after (space)flight

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

China plans to land rover on Mars by 2020

Chinese lunar rover alive but weak

Spot the Space Station looking at you

NASA Television Coverage Set for Orbital-2 Mission to Space Station

Closing the recycling circle

Space station astronauts wager friendly bet on USA vs. Germany match

Indian rocket launch delayed three minutes to avoid space debris

Indian launches PSLV C-23 rocket carrying five foreign satellites

NASA's sounding rocket crashes into Atlantic

NASA aborts launch of OCO-2

Discovery expands search for Earth-like planets

Astronomers discover most Earth-like of all exoplanets

Mega-Earth in Draco Smashes Notions of Planetary Formation

Kepler space telescope ready to start new hunt for exoplanets

ELASTx Stretches Potential for Future Communications Technologies

Does 3D printing have the right stuff?

Ghost writing the whip

NOAA GOES-R Satellite Black Wing Ready for Flight

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.