Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Unique optical trapping system offers way to launch high-power laser light
by Staff Writers
Washington DC (SPX) Mar 16, 2016


Simple, self-aligning method traps tiny tapered glass fiber inside hollow-core optical fiber, with potential applications in laser cutting and basic physics research. Image courtesy Philip Russell, director at the Max Planck Institute for the Science of Light in Erlangen, Germany. For a larger version of this image please go here.

Researchers have demonstrated, for the first time, that laser light can be used to manipulate a glass optical fiber tapered to a sharp point smaller than a speck of dust, in the middle of an optical fiber with a hollow core. Amazingly, optical forces cause the sharp point, or "nanospike," to self-align at the center of the hollow core, trapping it more and more strongly at the core center as the laser power increases.

"Launching very high power laser light into an optical fiber, especially a hollow-core fiber, can be very difficult and usually requires extensive electronics and optics to maintain alignment," explained Philip Russell, director at the Max Planck Institute for the Science of Light in Erlangen, Germany, and leader of the research team.

"This can be accomplished with our new system by simply pushing the nanospike into the hollow core and then turning up the laser power slowly. Once the nanospike self-stabilizes, you can turn up the laser power and nothing will move or get damaged."

In The Optical Society's high impact journal Optica, the researchers report that almost 90 percent of the laser light was transferred from the nanospike to the hollow-core fiber. The new work could increase applications for hollow-core fibers, a new class of fiber that features a hollow core rather than one made of glass like traditional optical fibers. Hollow-core fibers are especially good at handling high-power lasers, making them potentially useful for laser machining and cutting of metals, plastics, wood and other materials.

A sub-wavelength nanospike
To create the nanospike, the researchers started with an ordinary single-mode glass optical fiber about 100 microns in diameter. They heated this fiber so that they could stretch it to form a tapered portion and then etched the fiber's tip with hydrochloric acid to create a nanospike around 100 nanometers in diameter - smaller than the wavelength of visible light - and less than 1 millimeter long.

The researchers created the optical trap by inserting the nanospike into the hollow core fiber and launching a high-power 1064-nanometer laser beam into the single-mode fiber. When the laser light enters the tapered portion of the fiber it begins to spread out beyond the nanospike into the empty space inside the hollow core fiber.

As the taper gets smaller and smaller, the light begins to sense the boundary of the larger fiber core, which causes the light to reflect inwards towards the tapered fiber. This reflected light exerts a mechanical force on the nanospike, forming an optical trap.

"The nanospike is held in place by the light at exactly the right place to perfectly launch the light into the hollow core without any electronics or other systems to keep it in place," Russell said. "If any of the components move a little, there's no effect on the laser light because the nanospike self-aligns and self-stabilizes."

New approach for studying optomechanics
In addition to efficiently coupling high-power laser light to hollow-core fibers, the new system offers an entirely new way to study the mechanical forces exerted by light, or optomechanics, especially at very low pressures.

Scientists want to study optomechanical forces under high vacuum conditions but have been hampered by the fact that, for reasons not yet fully understood, particles tend to jump out of optical traps as air pressure is lowered from atmospheric levels.

"The beauty of the nanospike is that it behaves like a very small particle, but because it is firmly attached to a strong piece of fiber at one end, it isn't lost if it jumps out of the trap," said Russell. "This system allows us to measure forces that are almost impossible to measure in other systems, making it feasible to explore of an area of fundamental physics that isn't very well understood."

Research Paper: S. Xie, R. Pennetta, P. St.J. Russell, "Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fibre," Optica, 3, 3, 277 (2016).

.


Related Links
The Optical Society
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
New laser achieves wavelength long sought by laser developers
Bath, UK (SPX) Mar 08, 2016
Researchers at the University of Bath, United Kingdom have created a new kind of laser capable of pulsed and continuous mid-infrared (IR) emission between 3.1 and 3.2 microns, a spectral range that has long presented a major challenge for laser developers. The achievement could aid in the development of new uses for mid-IR lasers, which are currently used in applications such as spectrosco ... read more


TECH SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

TECH SPACE
Europe's New Mars Mission Bringing NASA Radios Along

Europe, Russia embark on search for life on Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

TECH SPACE
Astronaut Scott Kelly to retire in April

Space travel rules needed within 5 years: UN

Belgium Plans to Create Own National Space Agency

Accelerating discovery with new tools for next generation social science

TECH SPACE
China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

TECH SPACE
Marshall supports 15 years of ISS science discoveries

Space station astronauts ham it up to inspire student scientists

Roscosmos-NASA Contract on US Astronauts Delivery to ISS on Restructuring

NASA station leads way for improved measurements of Earth orientation, shape

TECH SPACE
ISRO launches PSLV C32, India's sixth navigation satellite

Soyuz 2-1B Carrier Rocket Launched From Baikonur

Assembly of Russia's Soyuz Rocket With Earth-Sensing Satellite Completed

Ariane 5 launch contributes to Ariane 6 development

TECH SPACE
NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

Sharpest view ever of dusty disc around aging star

TECH SPACE
Superman can start worrying - we've got the formula for (almost) kryptonite

ORNL researchers stack the odds for novel optoelectronic 2-D materials

Total invisibility cloak an impossibility, scientists say

Unpacking space radiation to control astronaut and earthbound cancer risk




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.