Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Uncovering bacterial role in platinum formation
by Staff Writers
Adelaide, Australia (SPX) Mar 24, 2016


Panning for platinum grains in Brazil: Frank Reith, University of Adelaide, and Barbara Etschmann, Monash University. Image courtesy University of Adelaide. For a larger version of this image please go here.

Australian scientists have uncovered the important role of specialist bacteria in the formation and movement of platinum and related metals in surface environments. Published in the journal Nature Geoscience, the research has important implications for the future exploration of platinum group metals.

"These platinum group elements are strategically important metals, but finding new deposits is becoming increasingly difficult due to our limited understanding of the processes that affect the way they are cycled through surface environments," says project leader Dr Frank Reith, Senior Lecturer in the University of Adelaide's School of Biological Sciences and Visiting Researcher at CSIRO Land and Water.

"This research reveals the key role of bacteria in these processes. This improved bio geochemical understanding is not only important from a scientific perspective but we hope will also lead to new and better ways of exploring for these metals."

Platinum group metals, especially platinum and palladium, are highly prized 'noble' metals used in a wide range of industrial processes. Ensuring adequate supplies is challenging and enhanced exploration is considered a global priority.

This project is a collaboration with Monash University (Professor Joel Brugger and Dr Barbara Etschmann) and Mineral Resources Tasmania (Ralph Bottrill). Other partners include the University of Queensland, University of Western Australia, RMIT and the Federal Institute for Geosciences and Natural Resources, Germany.

"Traditionally it was thought that these platinum group metals only formed under high pressure and temperature systems deep underground, and that when they were brought to the surface through weathering and uplift, they just sat there and nothing further happened to them," says Dr Reith.

"We've shown that that is far from the case. We've linked specialised bacterial communities, found in biofilms on the grains of platinum group minerals at three separate locations around the world, with the dispersion and re-concentration of these elements in surface environments.

"We've shown that nuggets of platinum and related metals can be reformed at the surface through bacterial processes."

The study has investigated platinum group elements from Brazil, Colombia and the Australian state of Tasmania.

Monash University Professor Joel Brugger says: "We needed to find fresh grains of platinum group minerals and extract them from soils and sediments in a manner that preserves fragile biofilms and tell-tale DNA. These grains are incredibly rare, and the chase took us all over the world, from Tasmania to Brazil."

The researchers found live bacterial biofilms on mineral grains from all three sites using scanning electron microscopy. They had been suggested previously but never before shown to exist. They also showed that the mineral grains found at the Brazil site were bio-organic in origin, further supporting the role of the bacteria in the secondary formation of platinum grains.

"We've shown the biofilms occur across a range of platinum-group-metal grains and in different locations," says Dr Reith. "And we've shown, that at the Brazil site at least, the entire process of formation of platinum and palladium was mediated by microbes."

The work builds on more than 10 years of research in gold, which has uncovered the role of micro-organisms in driving the Earth's gold cycle.

.


Related Links
University of Adelaide
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
How electrons travel through exotic new material
Princeton NJ (SPX) Mar 22, 2016
Researchers at Princeton University have observed a bizarre behavior in a strange new crystal that could hold the key for future electronic technologies. Unlike most materials in which electrons travel on the surface, in these new materials the electrons sink into the depths of the crystal through special conductive channels. "It is like these electrons go down a rabbit hole and show up on ... read more


TECH SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

TECH SPACE
How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

Close comet flyby threw Mars' magnetic field into chaos

TECH SPACE
Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

Accelerating discovery with new tools for next generation social science

Space Race Competition helps turn NASA Tech into new products

TECH SPACE
China to establish first commercial rocket launch company

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

TECH SPACE
Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Grandpa astronaut to break Scott Kelly's space record

Three new crew, including US grandpa, join space station

Space station astronauts ham it up to inspire student scientists

TECH SPACE
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

TECH SPACE
VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

Star eruptions create and scatter elements with Earth-like composition

Astronomers discover two new 'hot Jupiter' exoplanets

TECH SPACE
The quest for spin liquids

A foldable material that can change size, volume and shape

New insights into atomic disordering of complex metal oxides

How electrons travel through exotic new material




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.