. 24/7 Space News .
NANO TECH
Umbrella-shaped diamond nanostructures make efficient photon collectors
by Staff Writers
Washington DC (SPX) Oct 22, 2015


These are schematic images of analyzed objects and electric field maps calculated by FDTD simulations of (a) bulk diamond, (b) pillar-shaped structures, and (c) umbrella-shaped structures. Cross-sectional schematics, planar field maps at the height A, cross-sectional maps, and planar maps at the height B are shown from top to bottom. Image courtesy M. Hatano, et al. For a larger version of this image please go here.

Standard umbrellas come out when the sky turns dark, but in the nanoworld, umbrella shapes may be the next creative way to enhance light emission. Inspired by recent work to enhance the luminescence from diamond nanopillar structures, a team of researchers in Japan has discovered that "umbrella-shaped" diamond nanostructures with metal mirrors on the bottom are more efficient photon collectors than their diamond nanostructure "cousins" of other shapes.

By tweaking the shape of the diamond nanostructures into the form of tiny umbrellas, researchers from Tokyo Institute of Technology experimentally showed that the fluorescence intensity of their structures was three to five times greater than that of bulk diamond. They report their results in the journal Applied Physics Letters, from AIP Publishing.

To get started, the team formed the umbrella-shaped diamond nanostructures by using an original "bottom-up" fabrication technique that relies on selective and anisotropic growth through holes in a metal mask. The metal mask also serves as a mirror that is self-aligned to the diamond nanostructures.

"Our umbrella-shaped nanostructure has an effect similar to a solid immersion lens, which reduces the chance of total reflection on its upper surface and focuses the emitted light toward the 'upside' of the structure," explained Mutsuko Hatano, a professor in the Graduate School of Science and Engineering's Department of Physical Electronics at Tokyo Institute of Technology.

The self-aligned mirror goes a step further to enhance the efficiency of collecting this light by reflecting it at the lower surface area of the nanostructure.

"Umbrella-shaped diamond provides significantly better photon collection efficiency than bulk diamond or its pillar-shaped diamond counterpart, which have already been studied extensively," Hatano noted.

The significance of the team's discovery is that they've shown that the brighter fluorescence intensity of umbrella-shaped diamond nanostructures can be achieved by improving the photon collection efficiency of the nitrogen vacancy centers, which are the numerous point defects in diamonds that happen to boast the property of photoluminescence.

These nitrogen vacancy centers possess unique properties such as optical initialization and detection of its spin states, stable and strong fluorescence even from a single center, and long spin coherence time at room temperature. These properties make nitrogen vacancy centers in diamonds candidates for next-generation spin-based quantum devices such as magnetometers, quantum computers, and for research or work involving biological observations. Individual nitrogen vacancy centers could essentially function as the basic units of quantum computers.

Brighter fluorescence intensity is an essential aspect of improving the photon collection efficiency from nitrogen vacancy centers. Due to the high refractive index (2.4) of diamond, the photon collection efficiency from the nitrogen vacancy centers in bulk diamond is low. "In other words, diamond works as an effective light waveguide in low-refractive-index environments," said Hatano.

In terms of applications, the team's nanostructures may find use in highly sensitive magnetic sensors for making biological observations or within the computational science realm for quantum computing and cryptographic communications.

Next, Hatano and colleagues plan to pursue better control of the nanostructures' shape, as well as target a smoother surface by optimizing chemical vapor deposition growth conditions.

"Our goal now is to improve the nanostructures' photon collection efficiency," she said. "We also plan to demonstrate quantum sensors - in particular, highly sensitive magnetometers intended for life science and medical applications."

The article, "Improvement of fluorescence intensity of nitrogen vacancy centers in self-formed diamond microstructures," is authored by S. Furuyama, K. Tahara, T. Iwasaki, M. Shimizu, J. Yaita, M. Kondo, T. Kodera, and M. Hatano. It will be published in the journal Applied Physics Letters on October 20, 2015 (DOI: 10.1063/1.4933103).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Anti-clumping strategy for nanoparticles
New York NY (SPX) Oct 20, 2015
Nanoparticles are ubiquitous in industrial applications ranging from drug delivery and biomedical diagnostics to developing hydrophobic surfaces, lubricant additives and enhanced oil recovery solutions in petroleum fields. For such nanoparticles to be effective, they need to remain well dispersed into the fluid surrounding them. In a study published in EPJ B, Brazilian physicists identified the ... read more


NANO TECH
Europe-Russia Lunar mission will make them friends again

Mound near lunar south pole formed by unique volcanic process

Lunar Pox

Space startup confirms plans for robotic moon landings

NANO TECH
Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

Opportunity parked for solar panels to charge up for winter

NANO TECH
Hold on to your hoverboard: 'Back to the Future' is now

Journaling: Astronauts chronicle missions

Brands eye big bucks with 'Back to the Future' nostalgia

Russian Cosmonauts Taste 160 Meals Ahead of Space Station Expedition

NANO TECH
China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

NANO TECH
RSC Energia patented inflatable space module for ISS

Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

NANO TECH
ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

China puts new communication satellite into orbit for HK company

ISRO to Launch 6 Singapore Satellites in December

NANO TECH
Cosmic 'Death Star' is destroying a planet

Most earth-like worlds have yet to be born, according to theoretical study

Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

NANO TECH
U.S. Air Force long-range radar systems reach full operational capability

A 'hot' new development for ultracold magnetic sensors

Mother-of-pearl's genesis identified in mineral's transformation

Exciting breakthrough in 2-D lasers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.