. 24/7 Space News .
CHIP TECH
Ultrashort light pulses for fast 'lightwave' computers
by Staff Writers
Ann Arbor MI (SPX) Mar 15, 2017


A semiconductor crystal has shown an unprecedented capacity to shape ultrashort laser pulses. Image courtesy Fabian Langer, Regensburg University.

Extremely short, configurable "femtosecond" pulses of light demonstrated by an international team could lead to future computers that run up to 100,000 times faster than today's electronics. The researchers, including engineers at the University of Michigan, showed that they could control the peaks within the laser pulses and also twist the light.

The method moves electrons faster and more efficiently than electrical currents - and with reliable effects on their quantum states. It is a step toward so-called "lightwave electronics" and, in the more distant future, quantum computing, said Mackillo Kira, U-M professor of electrical engineering and computer science who was involved in the research.

Electrons moving through a semiconductor in a computer, for instance, occasionally run into other electrons, releasing energy in the form of heat. But a concept called lightwave electronics proposes that electrons could be guided by ultrafast laser pulses. While high speed in a car makes it more likely that a driver will crash into something, high speed for an electron can make the travel time so short that it is statistically unlikely to hit anything.

"In the past few years, we and other groups have found that the oscillating electric field of ultrashort laser pulses can actually move electrons back and forth in solids," said Rupert Huber, professor of physics at the University of Regensburg who led the experiment. "Everybody was immediately excited because one may be able to exploit this principle to build future computers that work at unprecedented clock rates - 10 to a hundred thousand times faster than state-of-the-art electronics."

But first, researchers need to be able to control electrons in a semiconductor. This work takes a step toward this capability by mobilizing groups of electrons inside a semiconductor crystal using terahertz radiation - the part of the electromagnetic spectrum between microwaves and infrared light.

The researchers shone laser pulses into a crystal of the semiconductor gallium selenide. These pulses were very short at less than 100 femtoseconds, or 100 quadrillionths of a second. Each pulse popped electrons in the semiconductor into a higher energy level - which meant that they were free to move around - and carried them onward. The different orientations of the semiconductor crystal with respect to the pulses meant that electrons moved in different directions through the crystal - for instance, they could run along atomic bonds or in between them.

"The different energy landscapes can be viewed as a flat and straight street for electrons in one crystal direction, but for others, it may look more like an inclined plane to the side," said Fabian Langer, a doctoral student in physics at Regensburg. "This means that the electrons may no longer move in the direction of the laser field but perform their own motion dictated by the microscopic environment."

When the electrons emitted light as they came down from the higher energy level, their different journeys were reflected in the pulses. They emitted much shorter pulses than the electromagnetic radiation going in. These bursts of light were just a few femtoseconds long.

Inside a crystal, they are quick enough to take snapshots of other electrons as they move among the atoms, and they could also be used to read and write information to electrons. For that, researchers would need to be able to control these pulses - and the crystal provides a range of tools.

"There are fast oscillations like fingers within a pulse. We can move the position of the fingers really easily by turning the crystal," said Kira, whose group worked with researchers at the University of Marburg, Germany, to interpret Huber's experiment.

The crystal could also twist the outgoing light waves or not, depending on its orientation to the incoming laser pulses.

Because femtosecond pulses are fast enough to intercept an electron between being put into an excited state and coming down from that state, they can potentially be used for quantum computations using electrons in excited states as qubits.

"For example, here we managed to launch one electron simultaneously via two excitation pathways, which is not classically possible. That is the quantum world. In the quantum world, weird things happen," Kira said.

An electron is small enough that it behaves like a wave as well as a particle - and when it is in an excited state, its wavelength changes. Because the electron was in two excited states at once, those two waves interfered with one another and left a fingerprint in the femtosecond pulse that the electron emitted.

"This genuine quantum effect could be seen in the femtosecond pulses as new, controllable, oscillation frequencies and directions," Kira said. "This is of course fundamental physics. With the same ideas you might optimize chemical reactions. You might get new ways of storing information or transmitting information securely through quantum cryptography."

Huber is particularly interested in stroboscopic slow motion cameras to reveal some of the fastest processes in nature, such as electrons moving around within atoms.

"Our crystalline solids make for fantastic light sources in this field - with unprecedented possibilities for pulse shaping," he said.

A paper on the work, titled "Symmetry-controlled temporal structure of high-harmonic carrier fields from a bulk crystal," will be published in Nature Photonics. The research is funded by the European Research Council and the German Research Foundation.

CHIP TECH
Bonding chips using inkjet printers
Washington DC (SPX) Mar 15, 2017
Today in electronics there are two main approaches to building circuits: the rigid one (silicon circuits) and the new, more appealing, flexible one based on paper and polymeric substrates that can be combined with 3-D printing. To date, chips are used to reach the reliable and high electrical performance needed for sophisticated specialized functions. However, for higher complexity systems ... read more

Related Links
University of Michigan
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Fly me to the Moon: Russia seeks new cosmonauts

The Second Moon Race

ECLSS Put to the Test for Commercial Crew Missions

Visions of the Future: Planetary Exploration Through 2050

CHIP TECH
Kennedy's Multi-User Spaceport Streamlines Commercial Launches

Designing new rocket engines that don't blow up

Space squadron supports record-breaking satellites launch

Europe launches fourth Earth monitoring satellite

CHIP TECH
Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

NASA Mars Orbiter Tracks Back-to-Back Regional Storms

Paleolake deposits on Mars might look like sediments in Indonesia

CHIP TECH
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

CHIP TECH
A Consolidated Intelsat and OneWeb

UK funding space entrepreneurs

Kymeta and Intelsat announce new service to revolutionize how satellite services are purchased

ISRO Makes More Space for Private Sector Participation in Satellite Making

CHIP TECH
Using lasers to create ultra-short pulses

Next-gen steel under the microscope

Aluminium giant Rusal doubles profits

Switching oxygen on and off

CHIP TECH
Mutants in Microgravity

Could fast radio bursts be powering alien probes

Enzyme-free krebs cycle may have been key step in origin of life on Earth

Light From An Ultra-Cool Neighbor

CHIP TECH
NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution

Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.