Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















TECH SPACE
Ultra-thin multilayer film for next-generation data storage and processing
by Staff Writers
Singapore (SPX) Apr 12, 2017


Associate Professor Yang Hyunsoo (left) and Dr Shawn Pollard (right), who are from the Department of Electrical and Computer Engineering at the NUS Faculty of Engineering, are key members of a research team that invented a novel ultra-thin multilayer film which could harness the properties of skyrmions as information carriers for storing and processing data on magnetic media. Image courtesy Siew Shawn Yohanes.

A team of scientists led by Associate Professor Yang Hyunsoo from the Department of Electrical and Computer Engineering at the National University of Singapore's (NUS) Faculty of Engineering has invented a novel ultra-thin multilayer film which could harness the properties of tiny magnetic whirls, known as skyrmions, as information carriers for storing and processing data on magnetic media.

The nano-sized thin film, which was developed in collaboration with researchers from Brookhaven National Laboratory, Stony Brook University, and Louisiana State University, is a critical step towards the design of data storage devices that use less power and work faster than existing memory technologies. The invention was reported in prestigious scientific journal Nature Communications on 10 March 2017.

The digital transformation has resulted in ever-increasing demands for better processing and storing of large amounts of data, as well as improvements in hard drive technology. Since their discovery in magnetic materials in 2009, skyrmions, which are tiny swirling magnetic textures only a few nanometres in size, have been extensively studied as possible information carriers in next-generation data storage and logic devices.

Skyrmions have been shown to exist in layered systems, with a heavy metal placed beneath a ferromagnetic material. Due to the interaction between the different materials, an interfacial symmetry breaking interaction, known as the Dzyaloshinskii-Moriya interaction (DMI), is formed, and this helps to stabilise a skyrmion. However, without an out-of-plane magnetic field present, the stability of the skyrmion is compromised. In addition, due to its tiny size, it is difficult to image the nano-sized materials.

To address these limitations, the researchers worked towards creating stable magnetic skyrmions at room temperature without the need for a biasing magnetic field.

Unique material for data storage
The NUS team, which also comprises Dr Shawn Pollard and Ms Yu Jiawei from the NUS Department of Electrical and Computer Engineering, found that a large DMI could be maintained in multilayer films composed of cobalt and palladium, and this is large enough to stabilise skyrmion spin textures.

In order to image the magnetic structure of these films, the NUS researchers, in collaboration with Brookhaven National Laboratory in the United States, employed Lorentz transmission electron microscopy (L-TEM).

L-TEM has the ability to image magnetic structures below 10 nanometres, but it has not been used to observe skyrmions in multilayer geometries previously as it was predicted to exhibit zero signal. However, when conducting the experiments, the researchers found that by tilting the films with respect to the electron beam, they found that they could obtain clear contrast consistent with that expected for skyrmions, with sizes below 100 nanometres.

Dr Pollard explained, "It has long been assumed that there is no DMI in a symmetric structure like the one present in our work, hence, there will be no skyrmion. It is really unexpected for us to find both large DMI and skyrmions in the multilayer film we engineered. What's more, these nanoscale skyrmions persisted even after the removal of an external biasing magnetic field, which are the first of their kind."

Assoc Prof Yang added, "This experiment not only demonstrates the usefulness of L-TEM in studying these systems, but also opens up a completely new material in which skyrmions can be created. Without the need for a biasing field, the design and implementation of skyrmion based devices are significantly simplified. The small size of the skyrmions, combined with the incredible stability generated here, could be potentially useful for the design of next-generation spintronic devices that are energy efficient and can outperform current memory technologies." Next step

Assoc Prof Yang and his team are currently looking at how nanoscale skyrmions interact with each other and with electrical currents, to further the development of skyrmion based electronics.

Research paper

TECH SPACE
DARPA Wades into Murky Multimedia Information Streams to Catch Big Meaning
Washington DC (SPX) Apr 10, 2017
The U.S. government has always had an interest in developing and maintaining a strategic understanding of events, situations, and trends around the world. In recent years, however, information complexity has exceeded the capacity of analysts to glean meaningful or actionable insights as data pours in from disparate sources, across a variety of genres, and a mixture of structured and unstructured ... read more

Related Links
National University of Singapore
Space Technology News - Applications and Research

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Russian, American two-man crew blasts off to ISS

You Say Tomato, I Say Tomatosphere: ISS Science to the Classroom

Two Russians, one American land back on Earth from ISS

NASA Invests in 22 Visionary Exploration Concepts

TECH SPACE
Dream Chaser to use Europe's next-generation docking system

Europe's largest sounding rocket launched from Esrange

Bezos sells $1 bn in Amazon stock yearly to pay for rocket firm

US-Russia Venture Hopes to Sell More RD-180 Rocket Engines to US

TECH SPACE
NASA's MAVEN reveals Mars has metal in its atmosphere

Opportunity Mars rover on the way to Perseverance Valley

Chile desert combed for clues to life on Mars

Russia critcal to ExoMars Project says Italian Space Agency Head

TECH SPACE
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

TECH SPACE
Commercial Space Operators To Canada: "We're Here, and We can Help"

Antenna Innovation Benefits the Government Customer

Ukraine in talks with ESA to become member

BRICS States Want to Expand Cooperation to Space Science

TECH SPACE
New method for 3-D printing extraterrestrial materials

Ultra-thin multilayer film for next-generation data storage and processing

USC Viterbi researchers develop new class of optoelectronic materials

Recent advances and new insights into quantum image processing

TECH SPACE
Earth-Sized 'Tatooine' Planets Could Be Habitable

Deep-sea animals make their own light

'Smart' cephalopods trade off genome evolution for prolific RNA editing

Scientists look for life's building blocks in outer space

TECH SPACE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement