. 24/7 Space News .
TIME AND SPACE
Ultra-short X-ray pulses could shed new light on the fastest events in physics
by Staff Writers
Oxford, UK (SPX) Nov 20, 2015


File image.

Ultra-short x-ray pulses could shed new light on the fastest events in physics. If you've ever been captivated by slow-motion footage on a wildlife documentary, or you've shuddered when similar technology is used to replay highlights from a boxing match, you'll know how impressive advancements in ultra-fast science can be.

Researchers from the Department of Physics at Oxford University (with colleagues at the Rutherford Appleton Laboratory and the University of Strathclyde) have demonstrated, for the first time, that it is possible to generate ultra-short x-ray pulses using existing technology - and it could open up a huge range of scientific applications.

A new paper, published in the journal Scientific Reports, outlines how computer simulations of a technique called Raman amplification show that current short-duration x-ray flashes - lasting just a thousandth of a billionth of a second - could be compressed even further, down to a fraction of a femtosecond (one millionth of a billionth of a second).

James Sadler, a second-year DPhil student and lead author of the paper, says: 'X-ray pulses from free electron lasers are being used in a whole host of ways, from biomedical technology and work on superconductors to research into proteins and states of matter in dense planets.

'We have shown, through our simulations, that it is possible to shorten the pulse length of x-rays by a factor of a hundred or a thousand - flashes of light shorter than the time it takes for a chemical reaction to take place. This could have exciting implications across a range of scientific disciplines.'

The simulations, using code written by Warren Mori at UCLA and Professor Luis Silva of the Instituto Superior Tecnico in Lisbon, were carried out on the UK's SCARF and ARCHER supercomputers.

Professor Peter Norreys, Principal Investigator of the project, adds: 'A good analogy might be those natural history programmes on TV. When you see, for example, a bird in flight captured by an ultra-fast camera, you can see all the beautiful intricacies that can't be picked up by the naked eye or conventional technology.

'By reducing the pulse length of these x-rays by another order of magnitude - in effect, quickening the "shutter speed" - we can make a number of scientific processes much clearer.'

Those processes include some of the shortest events in physics, such as electrons moving in atoms. The key now, say the researchers, is to demonstrate the technique under laboratory conditions.

The paper, titled 'Compression of X-ray Free Electron Laser Pulses to Attosecond Duration', is published in Scientific Reports


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Oxford
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
NIST team proves 'spooky action at a distance' is really real
Boulder CO (SPX) Nov 19, 2015
Einstein was wrong about at least one thing: There are, in fact, "spooky actions at a distance," as now proven by researchers at the National Institute of Standards and Technology (NIST). Einstein used that term to refer to quantum mechanics, which describes the curious behavior of the smallest particles of matter and light. He was referring, specifically, to entanglement, the idea that tw ... read more


TIME AND SPACE
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

TIME AND SPACE
A witness to a wet early Mars

NASA completes heat shield testing for future Mars exploration vehicles

Curiosity Mars Rover Heads Toward Active Dunes

Upgrade Helps NASA Study Mineral Veins on Mars

TIME AND SPACE
XCOR develops Lynx Simulator

Orion ingenuity improves manufacturing while reducing mass

Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

TIME AND SPACE
China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

New rocket readies for liftoff in 2016

TIME AND SPACE
Space-grown flowers will be new year blooms on International Space Station

Cygnus Launch Poised to Bolster Station Science, Supplies

Progress cargo spacecraft to be launched Dec 21

Space station power short circuits, system repairs needed

TIME AND SPACE
United Launch Alliance exits launch competition, leaving SpaceX

Spaceport America opens up two new campuses

Recycled power plant equipment bolsters ULA in its energy efficiency

Purchase of building at Ellington a key step in Houston Spaceport development plans

TIME AND SPACE
UA researchers capture first photo of planet in making

Rocket Scientists to Launch Planet-Finding Telescope

5400mph winds discovered hurtling around planet outside solar system

New exoplanet in our neighborhood

TIME AND SPACE
UW team refrigerates liquids with a laser for the first time

Network analysis shows systemic risk in mineral markets

Power up: Cockroaches employ a 'force boost' to chew through tough materials

Queen's University Belfast, Northern Ireland, invents first 'porous liquid'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.