. 24/7 Space News .
NANO TECH
Ultra-long, one-dimensional carbon chains are synthesised for the first time
by Staff Writers
Barrio Sarriena, Spain (SPX) Apr 22, 2016


Schematic representation of confined ultra-long, linear carbon chains inside different double-walled carbon nanotubes. Image courtesy Lei Shi / Faculty of Physics, University of Vienna.

Elemental carbon appears in many different forms, some of which are very well-known and have been thoroughly studied: diamond, graphite, graphene, fullerenes, nanotubes and carbyne. Within this "carbon family", carbyne (a truly one-dimensional carbon structure) is the only one that has not been synthesised until now, despite having been studied for more than 50 years. Organic chemists across the world had been trying to synthesise increasingly longer carbyne chains by using stabilizing agents; the longest chain obtained so far (achieved in 2010) was 44 carbon atoms.

A research group at the University of Vienna, led by Prof Thomas Pichler, has presented a new, simple means for stabilising carbon chains with a record-breaking length of over 6,400 carbon atoms. They have thus broken the previous record by more than two orders of magnitude. To do this, they used the confined space inside a double-walled carbon nanotube as a nano-reactor to make the ultra-long carbon chains grow and also to provide the chains with great stability. This stability is tremendously important for future applications.

The existence has been confirmed
The work carried out in collaboration with various highly prominent research groups worldwide, including the UPV/EHU's Nano-Bio Spectroscopy research Group led by Prof Angel Rubio, has unambiguously confirmed the existence of these chains by means of structural and optical probes. The researchers have presented their study in the latest edition of the prestigious Nature Materials journal.

According to the researchers, the direct experimental proof of the confined, ultra-long carbon chains, which are two orders of magnitude longer than the previously proven ones, can be seen as a promising step towards the final objective to obtain perfectly linear carbon chains.

Theoretical studies have shown that after having made these linear chains grow inside the carbon nanotube, the hybrid system could have a metallic nature due to the load transfer from the carbon nanotubes towards the chain, although both the nanotube and the chain are vacuum semi-conductors. So it is possible to control the electronic properties of this hybrid system. Therefore, this new system is not only interesting from the chemical point of view, it could also be very important in the field of nano devices.

According to theoretical models, carbyne has mechanical properties that are unmatched by any known material, as it even outperforms the mechanical resistance and flexibility properties of graphene and diamond. Furthermore, its electronic properties are pointing towards new nano-electronic applications, such as in the development of new magnetic semiconductors, high power density batteries, or in quantum spin transport electronics (spintronics).

However, the researchers point out that to do this it would be necessary to extract these ultra-long, linear carbon chains from the double-walled nanotube containing them and stabilise them in some liquid environment.

L. Shi, P. Rohringer, K. Suenaga, Y. Niimi, J. Kotakoski, J. C. Meyer, H. Peterlik, M. Wanko, S. Cahangirov, A. Rubio, Z. J. Lapin, L. Novotny, P. Ayala, T. Pichler. "Confined linear carbon chains as a route to bulk carbyne". Nature Materials, vol. 15, May 2016


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of the Basque Country
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Intracellular recordings using nanotower electrodes
Toyohashi, Japan (SPX) Apr 15, 2016
Our current understanding of how the brain works is very poor. The electrical signals travel around the brain and throughout the body, and the electrical properties of the biological tissues are studied using electrophysiology. For acquiring a large amplitude and a high quality of neuronal signals, intracellular recording is a powerful methodology compared to extracellular recording to measure t ... read more


NANO TECH
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

NANO TECH
NASA seeks industry ideas for an advanced Mars satellite

Rover mini-walkabout to find clay mineral continues

Russia, Italy plan first bid to explore beneath mars surface in 2018

First light for ExoMars

NANO TECH
Space Subcommittee examines commercial challenges

Mobile phone technology propels Starshot's ET space search

A US Department of Space

NASA blasts Orion Service Module with giant horns

NANO TECH
China plans to launch core module of space station around 2018

China set to launch "more livable" space lab in Q3

China aims for deeper space with new generation rockets

Chinese scientists develop mammal embryos in space for first time

NANO TECH
15 years of Europe on the International Space Station

BEAM successfully installed to the International Space Station

NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

NANO TECH
Sentinel-1B in position for liftoff

Soyuz meets its multi-satellite payload for Friday's Arianespace launch

Europe to launch satellites for Earth, Einstein

Arianespace cooperation with Russia remains smooth amid sanctions

NANO TECH
Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

Stars strip away atmospheres of nearby super-Earths

1917 astronomical plate has first-ever evidence of exoplanetary system

NANO TECH
Students observe damaged Hitomi X-ray satellite and debris

NASA studies 3D printing for building densely populated electronics

Electrons slide through the hourglass on surface of bizarre material

Indian space scientists produce world's lightest synthetic material









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.