Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
UW scientists build a nanolaser using a single atomic sheet
by Staff Writers
Seattle WA (SPX) Mar 30, 2015


The ultra-thin semiconductor, which is about 100,000 times thinner than a human hair, stretches across the top of the photonic cavity. Image courtesy University of Washington.

University of Washington scientists have built a new nanometer-sized laser - using the thinnest semiconductor available today - that is energy efficient, easy to build and compatible with existing electronics.

Lasers play essential roles in countless technologies, from medical therapies to metal cutters to electronic gadgets. But to meet modern needs in computation, communications, imaging and sensing, scientists are striving to create ever-smaller laser systems that also consume less energy.

The UW nanolaser, developed in collaboration with Stanford University, uses a tungsten-based semiconductor only three atoms thick as the "gain material" that emits light. The technology is described in a paper published in the March 16 online edition of Nature.

"This is a recently discovered, new type of semiconductor which is very thin and emits light efficiently," said Sanfeng Wu, lead author and a UW doctoral candidate in physics. "Researchers are making transistors, light-emitting diodes, and solar cells based on this material because of its properties. And now, nanolasers."

Nanolasers - which are so small they can't be seen with the eye - have the potential to be used in a wide range of applications from next-generation computing to implantable microchips that monitor health problems. But nanolasers so far haven't strayed far from the research lab.

Other nanolaser designs use gain materials that are either much thicker or that are embedded in the structure of the cavity that captures light. That makes them difficult to build and to integrate with modern electrical circuits and computing technologies.

The UW version, instead, uses a flat sheet that can be placed directly on top of a commonly used optical cavity, a tiny cave that confines and intensifies light. The ultrathin nature of the semiconductor - made from a single layer of a tungsten-based molecule - yields efficient coordination between the two key components of the laser.

The UW nanolaser requires only 27 nanowatts to kickstart its beam, which means it is very energy efficient.

Other advantages of the UW team's nanolaser are that it can be easily fabricated, and it can potentially work with silicon components common in modern electronics. Using a separate atomic sheet as the gain material offers versatility and the opportunity to more easily manipulate its properties.

"You can think of it as the difference between a cell phone where the SIM card is embedded into the phone versus one that's removable," said co-author Arka Majumdar, UW assistant professor of electrical engineering and of physics.

"When you're working with other materials, your gain medium is embedded and you can't change it. In our nanolasers, you can take the monolayer out or put it back, and it's much easier to change around," he said.

The researchers hope this and other recent innovations will enable them to produce an electrically-driven nanolaser that could open the door to using light, rather than electrons, to transfer information between computer chips and boards.

The current process can cause systems to overheat and wastes power, so companies such as Facebook, Oracle, HP, Google and Intel with massive data centers are keenly interested in more energy-efficient solutions.

Using photons rather than electrons to transfer that information would consume less energy and could enable next-generation computing that breaks current bandwidth and power limitations. The recently proven UW nanolaser technology is one step toward making optical computing and short distance optical communication a reality.

"We all want to make devices run faster with less energy consumption, so we need new technologies," said co-author Xiaodong Xu, UW associate professor of materials science and engineering and of physics. "The real innovation in this new approach of ours, compared to the old nanolasers, is that we're able to have scalability and more controls."

Still, there's more work to be done in the near future, Xu said. Next steps include investigating photon statistics to establish the coherent properties of the laser's light.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Washington
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





NANO TECH
Sharper nanoscopy
College Park MD (SPX) Mar 23, 2015
The 2014 chemistry Nobel Prize recognized important microscopy research that enabled greatly improved spatial resolution. This innovation, resulting in nanometer resolution, was made possible by making the source (the emitter) of the illumination quite small and by moving it quite close to the object being imaged. One problem with this approach is that in such proximity, the emitter and ob ... read more


NANO TECH
Extent of Moon's giant volcanic eruption is revealed

Yutu Changes Everything We Thought We Knew About Our Moon

Extent of moon's giant volcanic eruption is revealed

NASA's LRO Spacecraft Finds March 17, 2013 Impact Crater and More

NANO TECH
Ancient Martian lake system records 2 water-related events

Curiosity Rover Finds Biologically Useful Nitrogen on Mars

NASA Reformats Memory of Longest-Running Mars Rover

NASA's Opportunity Mars Rover Passes Marathon Distance

NANO TECH
Feud on Earth but peace in space for US and Russia

Russia Plans to Boost Space Tourism at Orbital Outpost

A Year in Space

Russia to Consider Training First Guatemalan Cosmonaut

NANO TECH
China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

China's Space Laboratory Still Cloaked

China has ability but no plan for manned lunar mission: expert

NANO TECH
Soyuz spacecraft docks at ISS for year-long mission

Russia announces plan to build new space station with NASA

One-Year Crew Set for Launch to Space Station

Russia, US May Sign New Deal to Send Astronauts to ISS

NANO TECH
Russia Launches Satan Missile With S Korean Kompsat 3A Satellite

United Launch Alliance Launches Second Mission in Less than Two Weeks

UAE Moves to Purchase Russian Spacecraft Launch Platform

Soyuz Installed at Baikonur, Expected to Launch Wednesday

NANO TECH
Planets in the habitable zone around most stars, calculate researchers

Our Solar System May Have Once Harbored Super-Earths

SOFIA Finds Missing Link Between Supernovae and Planet Formation

ESA's CHEOPS Satellite: The Pharaoh of Exoplanet Hunting

NANO TECH
Cluster satellite catches up

Scuttling satellites to save space

Japan military eyes recruits with cutesy smartphone game

USMC orders targeting system from Elbit Systems America




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.