Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

UW engineers achieve Wi-Fi at 10,000 times lower power
by Staff Writers
Seattle WA (SPX) Feb 26, 2016

University of Washington CSE and EE researchers introduce Passive Wi-Fi, a system that can generate Wi-Fi transmissions using 10,000 times less power than conventional methods. With this system, Wi-Fi signals can be transmitted at rates up to 11 megabits per second -- rates that are lower than maximum Wi-Fi speeds but are 11 times faster than Bluetooth -- and decoded on any of the billions of devices with Wi-Fi connectivity. Image courtesy University of Washington Department of Computer Science and Engineering. Watch a video on the research here.

The upside of Wi-Fi is that it's everywhere - invisibly connecting laptops to printers, allowing smartphones to make calls or stream movies without cell service, and letting online gamers battle it out. The downside is that using Wi-Fi consumes a significant amount of energy, draining the batteries on all those connected devices.

Now, a team of University of Washington computer scientists and electrical engineers has demonstrated that it's possible to generate Wi-Fi transmissions using 10,000 times less power than conventional methods.

The new Passive Wi-Fi system also consumes 1,000 times less power than existing energy-efficient wireless communication platforms, such as Bluetooth Low Energy and Zigbee. A paper describing those results will be presented in March at the 13th USENIX Symposium on Networked Systems Design and Implementation.

The technology has also been named one of the 10 breakthrough technologies of 2016 by MIT Technology Review.

"We wanted to see if we could achieve Wi-Fi transmissions using almost no power at all," said co-author Shyam Gollakota, a UW assistant professor of computer science and engineering. "That's basically what Passive Wi-Fi delivers. We can get Wi-Fi for 10,000 times less power than the best thing that's out there."

Passive Wi-Fi can for the first time transmit Wi-Fi signals at bit rates of up to 11 megabits per second that can be decoded on any of the billions of devices with Wi-Fi connectivity. These speeds are lower than the maximum Wi-Fi speeds but 11 times higher than Bluetooth.

Aside from saving battery life on today's devices, wireless communication that uses almost no power will help enable an "Internet of Things" reality where household devices and wearable sensors can communicate using Wi-Fi without worrying about power.

To achieve such low-power Wi-Fi transmissions, the team essentially decoupled the digital and analog operations involved in radio transmissions. In the last 20 years, the digital side of that equation has become extremely energy efficient, but the analog components still consume a lot of power.

The Passive Wi-Fi architecture assigns the analog, power-intensive functions - like producing a signal at a specific frequency - to a single device in the network that is plugged into the wall.

An array of sensors produces Wi-Fi packets of information using very little power by simply reflecting and absorbing that signal using a digital switch. In real-world conditions on the UW campus, the team found the passive Wi-Fi sensors and a smartphone can communicate even at distances of 100 feet between them.

"All the networking, heavy-lifting and power-consuming pieces are done by the one plugged-in device," said co-author Vamsi Talla, an electrical engineering doctoral student. "The passive devices are only reflecting to generate the Wi-Fi packets, which is a really energy-efficient way to communicate."

Because the sensors are creating actual Wi-Fi packets, they can communicate with any Wi-Fi enabled device right out of the box.

"Our sensors can talk to any router, smartphone, tablet or other electronic device with a Wi-Fi chipset," said co-author and electrical engineering doctoral student Bryce Kellogg. "The cool thing is that all these devices can decode the Wi-Fi packets we created using reflections so you don't need specialized equipment."

The technology could enable entirely new types of communication that haven't been possible because energy demands have outstripped available power supplies. It could also simplify our data-intensive worlds.

For instance, smart home applications that use sensors to track everything from which doors are open to whether kids have gotten home from school have typically used their own communication platforms because Wi-Fi is so power-hungry.

"Even though so many homes already have Wi-Fi, it hasn't been the best choice for that," said co-author Joshua Smith, UW associate professor of computer science and engineering and of electrical engineering. "Now that we can achieve Wi-Fi for tens of microwatts of power and can do much better than both Bluetooth and ZigBee, you could now imagine using Wi-Fi for everything."


Related Links
University of Washington
Satellite-based Internet technologies

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Internet by light promises to leave Wi-Fi eating dust
Barcelona (AFP) Feb 23, 2016
Connecting your smartphone to the web with just a lamp - that is the promise of Li-Fi, featuring Internet access 100 times faster than Wi-Fi with revolutionary wireless technology. French start-up Oledcomm demonstrated the technology at the Mobile World Congress, the world's biggest mobile fair, in Barcelona. As soon as a smartphone was placed under an office lamp, it started playing a vid ... read more

NASA chooses ASU to design and operate special satellite

Chinese scientists invent leak detection system for moon exploration

Aldrin recounts successes and challenges of historic space journey

Edgar Mitchell, astronaut who walked on Moon, dead at 85

Jarosite in the Noctis Labyrinthus Region of Mars

Trace Gas Orbiter and Schiaparelli are joined

Footprints of a martian flood

Russia plans return to Mars, Moon despite money woes

NASA Space Program Now Requires Russian Language

Tourists could soon benefit from direct flights to Baikonur Space Center

Virgin Galactic unveils new spaceship 16 months after deadly crash

NASA sees record number of astronaut applications

Staying Alive on Tiangong 2

China Conducts Final Tests on Most Powerful Homegrown Rocket

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

Send your computer code into space with astronaut Tim Peake

Black Mold Found in Cargo Prepared for ISS, Resupply Mission Delayed

Putting the Public in the Shoes of Space Station Science

Russians spacewalk to retrieve biological samples

Launcher and satellite preparations continue for Ariane 5's mission with EUTELSAT 65 West A

JAXA Launches X-ray Astronomy Satellite

ULA Launches NROL-45 Payload for the National Reconnaissance Office

SES-9 Launch Targeting Late February

Longest-Lasting Stellar Eclipse Discovered

Astronomers take images of an exoplanet changing over time

First detection of super-earth atmosphere

Hubble Directly Measures Rotation of Cloudy 'Super-Jupiter'

New research introduces 'pause button' for boiling

Mystery of Dracula orchids' mimicry is unraveled with a 3-D printer

Shrinking 3-D technology for comfortable smart phone viewing

Modified laser cutter prints 3-D objects from powder

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.