. 24/7 Space News .
CHIP TECH
UNIST researchers develop silicon chip-based quantum photonic devices
by Staff Writers
Ulsan, South Korea (SPX) Jan 02, 2018


This is a schematic of the integrated InP nanobeam and silicon waveguide. In the lower image this is a scanning electron microscope image of the fabricated nanobeam that is suspended by thin tethers that attach it to the bulk substrate.

An international team of researchers, affiliated with UNIST has presented a core technology for quantum photonic devices used in quantum information processing. They have proposed combining of quantum dots for generating light and silicon photonic technologies for manipulating light on a single device.

This breakthrough has been led by Professor Je-Hyung Kim in the School of Natural Science at UNIST in collaboration with Professor Edo Waks and a group of researchers at the University of Maryland, United States.

In this study, the research team demonstrated the integration of silicon photonic devices with a solid-state single photon emitter. We use a hybrid approach that combines silicon photonic waveguides with InAs/InP quantum dots that act as efficient sources of single photons at telecom wavelengths spanning the O-band and C-band.

In classical computing, a bit is a single piece of information that can exist in two states - 1 or 0. Quantum computers uses quantum bits that can occupy 0, 1, or a a superposition that can be both at the same time. Although there are several potentially fruitful approaches exist to quantum information processing based on a variety of quantum technologies, including atom, light, and superconducting devices.

However, the future of quantum computing, like the quantum state itself, still remains uncertain. Professor Kim focuses on the quantum information processing, using light. This is because quantum bits can be implemented using the polarized state of light, its duration, and the route information, similar to electron spins.

A recently developed quantum light source exhibits the characteristics of quantum physics, including the superposition, quantum entanglement, and no-cloning theorem. This has enabled innovative application technologies, such as quantum simulators, quantum state transfer, and quantum cryptography.

However, in order to commercialize the technologies used for the actual quantum information processing technology, it is necessary to perform quantum optics experiments directly on the photonic device. According to the research team, such innovation could be the precursor for quantum circuits, which are expected to play a large role in the future of quantum computers and communication.

"In order to build photon-based integrated quantum optical devices, it is necessary to produce as many quantum light sources as possible in a single chip," says Professor Kim. "Through this study, we have proposed the basic form of quantum optical devices by producing highly effective quantum light source with quantum dots and creating the pathway to manipulate light with the use of silicon substrates."

Quantum dots are ultrafine particles or nanocrystals of a semiconductor material with fiameters in the range of 2 to 10 nanometers (A nanometer is one billionth of a meter). In general, quantum dots take the form of compounds.

However, as the size decreases, they begin to exhibit discontinuous energy structure, which results in having similar properties to the light emitted by atoms. Although quantum dots have been used successfully as highly efficient single-photon sources, they had difficulty controlling light.

In the study, the research team demonstrated the integration of silicon photonic devices with a solid-state single photon emitter. Here, they used a hybrid approach that combines silicon photonic waveguides with InAs/InP quantum dots that act as efficient sources of single photons at telecom wavelengths spanning the O-band and C-band.

Then, they removed the quantum dots via a pick-and-place procedure with a microprobe tip combined with a focused ion beam and scanning electron microscope. This technique allowed transferring of tapered InP nanobeams containing InAs quantum dots onto a silicon waveguide with nanometer-scale precision.

"This integration opens up the possibility to leverage the highly advanced photonics capabilities developed in silicon to control and route nonclassical light from on-demand single photon sources," the research team notes. "In addition, the fabricated devices operate at telecom wavelengths and can be electrically driven, which are useful for fiber-based quantum communication."

The quantum optical device, developed by the research team has successfully transferred the emission from the quantum dots along the silicon photonic circuits with high efficiency. Using this, they also successfully incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement.

"Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons," says Professor Kim.

Je-Hyung Kim et al., "Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip," (2017), Nano Letters.

CHIP TECH
Revolutionizing electronics using Kirigami
Toyohashi, Japan (SPX) Dec 18, 2017
A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology has developed an ultrastretchable bioprobe using Kirigami designs. The Kirigami-based bioprobe enables one to follow the shape of spherical and large deformable biological samples such as hear ... read more

Related Links
Ulsan National Institute of Science and Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Orion parachute tests prove out complex system for human deep space missions

JPL sketches out a trip to the Alpha Centauri system in 2069

The Russian Progress MS-06 cargo freighter undocks and takes a final Pacific dive

McCandless, first astronaut to fly untethered, dies at age 80

CHIP TECH
China tests new ballistic missiles with hypersonic glide vehicles

Space Launch System solid rocket booster avionics complete key testing

Japan launches H-IIA carrier rocket with 2 satellites

One Small Step: Massive Stratolaunch Aircraft Conducts First Taxi Tests

CHIP TECH
Opportunity takes extensive imagery to decide where to go next

Mars: Not as dry as it seems

Mars' surface water - the truth is out there

Mars Mission Sheds Light on Habitability of Distant Planets

CHIP TECH
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

CHIP TECH
Russia restores contact with Angolan satellite

Fourth set of Iridium NEXT satellites arrive in orbit and provide telemetry

SpaceX launches 10 more satellites for Iridium

Green Light for Continued Operations of ESA Science Missions

CHIP TECH
Rainbow spider's iridescence could inspire color technology advances

Experiments reveal evidence of exotic new matter state

Better mastery of heat flow leads to next-generation thermal cloaks

Data scientists mine government data for evidence of historical events

CHIP TECH
Discovery of new planet reveals distant solar system to rival our own

Scientists directly observe living bacteria in polar ice and snow

Genes in Space-3 successfully identifies unknown microbes in space

Powerful new tool for looking for life beyond Earth

CHIP TECH
Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?

Juno probes the depths of Jupiter's Great Red Spot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.