. 24/7 Space News .
NANO TECH
UMass Amherst environmental chemist flashes warning light on new nanoparticle
by Staff Writers
Amherst MA (SPX) Aug 31, 2017


A schematic diagram illustrating mechanisms of BP toxicity, which include disruption of cell membrane integrity related to layered BP particle size and generation of reactive oxygen species. Baoshan Xing at UMass Amherst, with colleagues in China, report the findings in a cover story in Small. Image courtesy UMass Amherst/Baoshan Xing.

When environmental and soil chemist Baoshan Xing at the University of Massachusetts Amherst began reading in 2014 that a new, two-dimensional material known as layered black phosphorous (BP) was gaining the attention of biomedical researchers for use in drug delivery systems and tumor photothermal therapy, he was both intrigued and concerned.

"I am not only a soil chemist, but an environmental chemist," he notes. "As agricultural scientists, we are very familiar with phosphorous but I had never heard of two-dimensional black phosphorous. So we read all the nice papers about black phosphorous, and then, as environmental chemists, we started asking about nanoparticle toxicity. You have to be careful where you put such materials in the human body."

In a recent cover story of the journal, Small, his former postdoctoral fellow, Qing Zhao, currently a professor at the Institute of Applied Ecology at the Chinese Academy of Sciences, and Xing report toxicity test results for different thicknesses of layered BP in three cell lines. Briefly, they found disruption of cell membrane integrity related to layered BP particle size, plus concentration- and cell-type-dependent cytotoxicity.

Xing says, "We are among the first ones to work with this material, particularly in regard to its environmental implications." He and colleagues urge that "an in-depth understanding of BP's cytotoxicity is of utmost importance" to provide useful data for risk evaluation and safe biomedical applications.

The researchers acknowledge that the new material, which is collected as thin samples from phosphorous crystals by a technique known as exfoliating, that is, shaving off layers of different thicknesses, does have "unique optical and electrical properties," which might make it "a promising candidate for an efficient drug delivery vehicle and photothermal/photodynamic therapy in treating a variety of cancers."

Xing says, "I remember when single-layer graphene generated great excitement in the research community a decade ago, and I think people are getting excited now about a single layer of black phosphorous, that it might have many exciting applications." But the two materials differ a great deal in their single-layer structure, he adds, where single-layer graphene is perfectly flat, exfoliated BP has a zig-zagged structure.

Zhao, Xing and their colleagues point out that studies of layered BP toxicity conducted to date have used viability reagents, which can interfere with cytotoxicity results. By contrast, they have used a label-free, real-time cell analysis (RTCA) technique that does not need any fluorescent or colorimetric viability reagents.

Assaying layered BP toxicity in three cell types, mouse fibroblast cells (NIH 3T3), human colonic epithelial cells (HCoEpiC) and human embryonic kidney cells (293T), the UMass Amherst and Chinese research team found that layered BP's cytotoxicity is based on the fact that it generates reactive oxygen species (ROS). ROS are among the most potent cell-damaging agents known. Layered BP also disrupts cell membrane integrity in a particle-size-dependent manner. "The larger the BP is, less membrane integrity will be retained," they note.

Further, they say the IC50 values of layered BP can differ by dozens of times depending on particle size and cell type. IC50 values refer to a measure of how effective a material is in inhibiting a specific biological function. Xing and colleagues urge that "special attention should be paid to the size of layered BP and the types of target cell lines for its application in biomedical field."

They add, "Further study is undoubtedly necessary to explore the cytotoxicity mechanisms in depth," and that "given the results from our present study, the mechanisms of BP's cytotoxicity are strikingly complicated and have significant implications for the risk evaluation and safe biomedical applications of BP."

They plan to follow up with further experiments to test their hypothesis that layered BP, with its unusual electrical properties, might prove useful in removing both positively and negatively charged chemicals and organic contaminants from water.

NANO TECH
Carbon nanotubes worth their salt
Livermore CA (SPX) Aug 28, 2017
Lawrence Livermore scientists, in collaboration with researchers at Northeastern University, have developed carbon nanotube pores that can exclude salt from seawater. The team also found that water permeability in carbon nanotubes (CNTs) with diameters smaller than a nanometer (0.8 nm) exceeds that of wider carbon nanotubes by an order of magnitude. The nanotubes, hollow structures made of ... read more

Related Links
University of Massachusetts at Amherst
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
'Gifted' high-tech takes spotlight at Berlin's IFA fair

NASA Offers Space Station as Catalyst for Discovery in Washington

Forty years on, Voyager still hurtles through space

ISS Orbit Increases Almost 2,000 Feet After Adjustment Maneuver - Control Center

NANO TECH
ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Falcon 9 launches from Vandenberg

SpaceX launches Taiwan's first home-built satellite

Indian Space Agency, Israeli counterpart to formalize strategic collaborations

NANO TECH
New mini tool has massive implications

Opportunity seeks energy-favorable locations to recharge during winter

Citizen scientists spot Martian 'spiders' in unexpected places

For Moratorium on Sending Commands to Mars, Blame the Sun

NANO TECH
Russia, China May Sign 5-Year Agreement on Joint Space Exploration

China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

ESA and Chinese astronauts train together

NANO TECH
ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

NANO TECH
Artificial intelligence analyzes gravitational lenses 10 million times faster

Clamping down on causality by probing laser cavities

Why does rubbing a balloon on your hair make it stick?

Breakthrough made in ultra-high strength steel

NANO TECH
Ultraviolet Light May Be Ultra Important in Search for Life

Hubble delivers first hints of possible water content of TRAPPIST-1 planets

15 Fast Radio Bursts Detected from Distant Universe

A New Search for Extrasolar Planets from the Arecibo Observatory

NANO TECH
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

Scientists probe Neptune's depths to reveal secrets of icy planets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.