. 24/7 Space News .
ENERGY TECH
Defects in LED diodes that lead to less efficient solid state lighting identified
by Staff Writers
Santa Barbara CA (SPX) Apr 13, 2016


A conceptual illustration of how defects in a crystal lattice might contribute to nonradiative recombination of electrons and holes in LEDs. Image courtesy Peter Allen/UCSB illustration. For a larger version of this image please go here.

Using state-of-the-art theoretical methods, UCSB researchers have identified a specific type of defect in the atomic structure of a light-emitting diode (LED) that results in less efficient performance. The characterization of these point defects could result in the fabrication of even more efficient, longer lasting LED lighting.

"Techniques are available to assess whether such defects are present in the LED materials and they can be used to improve the quality of the material," said materials professor Chris Van de Walle, whose research group carried out the work.

In the world of high-efficiency solid-state lighting, not all LEDs are alike. As the technology is utilized in a more diverse array of applications - including search and rescue, water purification and safety illumination, in addition to their many residential, industrial and decorative uses - reliability and efficiency are top priorities. Performance, in turn, is heavily reliant on the quality of the semiconductor material at the atomic level.

"In an LED, electrons are injected from one side, holes from the other," explained Van de Walle. As they travel across the crystal lattice of the semiconductor - in this case gallium-nitride-based material - the meeting of electrons and holes (the absence of electrons) is what is responsible for the light that is emitted by the diode: As electron meets hole, it transitions to a lower state of energy, releasing a photon along the way.

Occasionally, however, the charge carriers meet and do not emit light, resulting in the so-called Shockley-Read-Hall (SRH) recombination. According to the researchers, the charge carriers are captured at defects in the lattice where they combine, but without emitting light.

The defects identified involve complexes of gallium vacancies with oxygen and hydrogen. "These defects had been previously observed in nitride semiconductors, but until now, their detrimental effects were not understood," explained lead author Cyrus Dreyer, who performed many of the calculations on the paper.

"It was the combination of the intuition that we have developed over many years of studying point defects with these new theoretical capabilities that enabled this breakthrough," said Van de Walle, who credits co-author Audrius Alkauskas with the development of a theoretical formalism necessary to calculate the rate at which defects capture electrons and holes.

The method lends itself to future work identifying other defects and mechanisms by which SRH recombination occurs, said Van de Walle.

"These gallium vacancy complexes are surely not the only defects that are detrimental," he said. "Now that we have the methodology in place, we are actively investigating other potential defects to assess their impact on nonradiative recombination."

The paper has been published as a Featured Article in the April 4 issue of Applied Physics Letters [APL 108, 141101 (2016)], with an accompanying figure on the cover of the journal.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Barbara
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Back to basics with thermoelectric power
Washington DC (SPX) Apr 11, 2016
Many phenomena in physics, though well-known, are not necessarily widely understood. That's the case with thermoelectricity, which harnesses waste heat by coupling heat flux and electric current. However, understanding such phenomena is important in order to leave the door open for discovering novel manifestations of them. Thus, even today physicists working in the area of thermoelectricit ... read more


ENERGY TECH
The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

Earth's moon wandered off axis billions of years ago

ENERGY TECH
Help keep heat on Mars Express through data mining

Ancient Mars bombardment likely enhanced life-supporting habitat

Opportunity's Devilish View from on High

Mars Longevity Champion Launched 15 Years Ago

ENERGY TECH
Spanish port becomes global 'smart city' laboratory

Silicon Beach: LA tech hub where the sun always shines

New DNA/RNA Tool to Diagnose, Treat Diseases

ASU to develop the next generation science education courseware for NASA

ENERGY TECH
China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

ENERGY TECH
Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

ENERGY TECH
NASA Progresses Toward SpaceX Resupply Mission to Space Station

SpaceX lands rocket on water platform for first time

SpaceX to launch first cargo since 2015 accident

Atlas V OA-6 Anomaly Status

ENERGY TECH
Searching for Far Out and Wandering Worlds

ALMA's most detailed image of a protoplanetary disc

Planet formation in Earth-like orbit around a young star

NASA's Spitzer Maps Climate Patterns on a Super-Earth

ENERGY TECH
'Self-healing' plastic could mean better bandages, tougher phone cases

Ruthenium nanoframes open the doors to better catalysts

Artificial molecules

Record-breaking steel could be used for body armor, shields for satellites









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.