. 24/7 Space News .
UCLA Engineering Researchers Create Model To Help Identify Optimal Hydrogen-Storage Materials

Unfortunately, simple binary hydrides, in which hydrogen combines with light elements such as lithium, sodium, magnesium or others, do not adequately satisfy the requirements for on-board storage, as the hydrogen-yielding reaction requires heating the material to impractically high temperatures. Because of this, researchers have turned to multicomponent hydride mixtures with higher volumetric and gravimetric densities, better operating temperatures and improved reaction rates for practical hydrogen storage.
by Staff Writers
Los Angeles CA (SPX) Oct 04, 2007
Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have developed a model that could help engineers and scientists speed up the development of hydrogen-fueled vehicles by identifying promising hydrogen-storage materials and predicting favored thermodynamic chemical reactions through which hydrogen can be reversibly stored and extracted.

The new method, published online in the peer-reviewed journal Advanced Materials, was developed by Alireza Akbarzadeh, a UCLA postdoctoral researcher in the department of materials science and engineering; Vidvuds Ozolins, UCLA associate professor of materials science and engineering; and Christopher Wolverton, professor of materials science and engineering at Northwestern University in Illinois.

Because of global environmental changes associated with man-made carbon dioxide emissions and the limited resources of fossil fuels, developing alternate and renewable energy sources is important for a sustainable future. Hydrogen is a potential source of clean energy for future use in passenger vehicles powered by cheap and energy-efficient fuel cells, but its widespread adoption has been hindered by the need to store it on-board at very high densities.

A promising solution to this problem involves storing hydrogen within a material in the form of a chemically bound hydride, for example lithium hydride (LiH). Unfortunately, simple binary hydrides, in which hydrogen combines with light elements such as lithium, sodium, magnesium or others, do not adequately satisfy the requirements for on-board storage, as the hydrogen-yielding reaction requires heating the material to impractically high temperatures.

Because of this, researchers have turned to multicomponent hydride mixtures with higher volumetric and gravimetric densities, better operating temperatures and improved reaction rates for practical hydrogen storage. However, this flexibility comes at the price of drastically increased complexity associated with the large number of competing reactions and possible end-products other than hydrogen.

Thus, predicting desirable hydrogen storage with multicomponent mixtures has proved difficult. For example, the recently studied lithium hydride compound Li4BN3H10 was found to have as many as 17 hydrogen-release reactions, of which only three were found to be feasible - and none were in the desired range of temperatures and hydrogen pressures for practical on-board storage in hydrogen-powered vehicles.

The research team used modern quantum mechanical theories and high-powered computers to develop an algorithm that can automatically and systematically pinpoint phases and reactions that have the most favored thermodynamic properties - that is, those that can release hydrogen at ambient temperatures using the waste heat from a proton exchange membrane (PEM) fuel cell. The team tested the method on the well-studied Lithium-Magnesium-Nitrogen-Hydrogen system, predicting all experimentally observed pathways in the system. The researchers say this method can also be applied to other multicomponent hydrogen systems.

"The development of an algorithm that goes beyond chemical intuition and finds all hydrogen storage reactions 'in silico' is crucial and will help the scientific and engineering community to develop revolutionary new hydrogen-storage materials," Akbarzadeh said. "This is a major achievement in the field, which can boost up the search for the best reversible solid-state hydrogen storage."

"We are steadily approaching the moment when we will be able to theoretically design materials with desired properties, just like a tailor makes a suit to fit the customer's needs," Ozolins said. "This will bring in a qualitatively new era of collaboration between theory and computation, experiment and technology development."

Community
Email This Article
Comment On This Article

Related Links
UCLA Henry Samueli School of Engineering and Applied Science
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Stopping Atoms
Austin TX (SPX) Oct 04, 2007
With atoms and molecules in a gas moving at thousands of kilometres per hour, physicists have long sought a way to slow them down to a few kilometres per hour to trap them. A paper, published today in the Institute of Physics' New Journal of Physics, demonstrates how a group of physicists from The University of Texas at Austin, US, have found a way to slow down, stop and explore a much wider range of atoms than ever before.







  • European Agency Offers To Take Indians For A Space Ride
  • Big dreams, few results in private space exploration
  • NASA, NSBRI Select 17 Proposals In Space Radiation Research
  • Part-time model is Malaysia's first astronaut

  • Are manned missions needed to explore Mars and beyond
  • Duck Bay, Victoria Crater, Planet Mars
  • Spirit Arrives At Stratigraphic Wonderland In Columbia Hills On Mars
  • Spirit Makes Progress Across Home Plate

  • Russian Space Launch Vehicle Firing Tests Set For 2008
  • Arianespace To Launch Japanese Satellite JCSAT-12
  • United Launch Alliance Launches 75th Consecutive Delta II On USAF 60th Anniversary
  • Pratt And Whitney Rocketdyne's RS-27A Powers New-Gen Imaging Satellite To Orbit

  • Successful Image Taking By The High Definition Television
  • Boeing Launches WorldView-1 Earth-Imaging Satellite
  • New Faraway Sensors Warn Of Emerging Hurricane's Strength
  • Key Sensor For Northrop Grumman NPOESS Program Passes Critical Structural Test

  • Maneuver Puts New Horizons On A Straight Path To Pluto
  • Outbound To The Outerplanets At 7 AU
  • Charon: An Ice Machine In The Ultimate Deep Freeze
  • New Horizons Slips Into Electronic Slumber

  • The Dark Matter Of The Universe Has A Long Lifetime
  • Into The Chrysalis
  • A New Reduction Of The Hipparcos Catalogues
  • Explosion Reveals Tiny Magnetic Island

  • A New Lunar Impact Observatory
  • Lunar Outpost Plans Taking Shape
  • Asia could win next 'Space Race', US scientists fear
  • Japan plans two more moon missions

  • EU deadlocked over funding for Galileo satnav project
  • EU plans for funding Galileo satnav system already hitting snags
  • Galileo GPS Network Hit By More Delays
  • DoD Permanently Discontinues Procurement Of Global Positioning System Selective Availability

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement