. 24/7 Space News .
ENERGY TECH
Two-stage power management system boosts energy-harvesting efficiency
by Staff Writers
Atlanta GA (SPX) Jan 12, 2016


With this triboelectric nanogenerator and two-stage power management and storage system, finger tapping motion generates enough power to operate this scientific calculator. Image courtesy Zhong Lin Wang Laboratory. For a larger version of this image please go here.

A two-stage power management and storage system could dramatically improve the efficiency of triboelectric generators that harvest energy from irregular human motion such as walking, running or finger tapping.

The system uses a small capacitor to capture alternating current generated by the biomechanical activity. When the first capacitor fills, a power management circuit then feeds the electricity into a battery or larger capacitor. This second storage device supplies DC current at voltages appropriate for powering wearable and mobile devices such as watches, heart monitors, calculators, thermometers - and even wireless remote entry devices for vehicles.

By matching the impedance of the storage device to that of the triboelectric generators, the new system can boost energy efficiency from just one percent to as much as 60 percent. The research was reported December 11 in the journal Nature Communications.

"With a high-output triboelectric generator and this power management circuit, we can power a range of applications from human motion," said Simiao Niu, a graduate research assistant in the School of Materials Science and Engineering at the Georgia Institute of Technology. "The first stage of our system is matched to the triboelectric nanogenerator, and the second stage is matched to the application that it will be powering."

Triboelectric nanogenerators use a combination of the triboelectric effect and electrostatic induction to generate small amounts of electrical power from mechanical motions such as rotation, sliding or vibration. The triboelectric effect takes advantage of the fact that certain materials become electrically charged after they come into moving contact with a surface made from a different material. However, the output is alternating current, which can power applications such as LED lighting - but is not ideal for mobile devices.

Ordinary alternating current can be converted to direct current by using a transformer - but such a device requires consistency in the number of cycles per second. Because biomechanical energy sources such as walking or finger tapping produce fluctuating amplitude and variable frequencies, a standard transformer can't be used. In addition, the output from a triboelectric generator tends to have high voltage and low current - while applications for it require just the opposite: low voltage and higher current.

To address the problem, Niu and collaborators under the supervision of Professor Zhong Lin Wang at Georgia Tech developed their power management system, which converts the fluctuating power amplitudes and variable frequencies to a continuous direct current.

The power management system can work with any triboelectric generator that produces a minimum of 100 microwatts. The system requires some power to operate, but compensates by increasing the overall output as much as 330 times to reach milliwatt levels.

"It doesn't matter what kind of mechanical motion or what frequency of mechanical motion you have as long as the energy input is high," said Niu. "This is a critical step in the commercialization of triboelectric nanogenerators because it opens up a range of new applications."

With finger tapping as the only energy source, the power unit provides continuous direct current of 1.044 milliwatts. The unit can work continuously with the motion, allowing devices to be operated even as the device charges the battery or capacitor.

Beyond portable electronics, Niu believes the system could be useful in powering networks of sensors, allowing long-term operation without the need for replacing batteries.

"In a sensor network, you would have so many devices that you could not replace all of the batteries," he said. "This technology would allow you to power the sensors by harvesting energy from the environment and then directly providing energy for each component of the network."

With the energy management circuitry demonstrated in this proof-of-concept, the next step will be to miniaturize the circuitry to fit into an overall system, said Zhong Ling Wang, a Regents professor in the Georgia Tech School of Materials Science and Engineering who led development of the original triboelectric nanogenerators.

"This new device provides a bridge between the triboelectric nanogenerator and many different types of applications," he said. "This work will allow us to build a package that can power wearable and mobile devices from the motion of humans. With constant output from a battery or large capacitor, you can drive just about any device that you want."

The power management system could also be applied to piezoelectric and pyroelectric generators, which also produce alternating current.

In 2012, Wang and his research team announced triboelectric nanogenerators that produce small amounts of electricity from motion in the world around us - by capturing the electrical charge produced when two different kinds of plastic materials rub against one another. Based on flexible polymer materials, the triboelectric generators provide alternating current (AC) from activities such as walking.

Variations in generator structures allow a variety of applications depending on the source of mechanical energy. Wang's team has reported four major groups of generators including those that operate by (1) vertical contact-separation mode, (2) lateral sliding mode, (3) single-electron mode, and (4) freestanding triboelectric-layer mode. There are also hybrid combinations of these major structural modes.

Simiao Niu, Xiaofeng Wang, Fang Yi, Yu Sheng Zhou and Zhong Lin Wang, "A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics," (Nature Communications, 2015).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Creation of Jupiter interior, a step towards room temp superconductivity
Osaka, Japan (SPX) Dec 21, 2015
Hydrogen is the most abundant element in the universe, and a major component of stars such as the Sun, as well as gas-giant planets such as Jupiter and Saturn. In recent years, hydrogen's behavior at high temperature and high pressure has been in the realm of interest not only for planetary science, but also for fields such as materials science for the purpose of achieving a hydrogen energy soci ... read more


ENERGY TECH
South Korea to launch lunar exploration in 2016, land by 2020

Death rumors of Russian lunar program 'greatly exaggerated' - Deputy PM

Russia Postpones Plans on Extensive Moon Exploration Until 2025

Rare full moon on Christmas Day

ENERGY TECH
Boulders on a Martian Landslide

NASA suspends March launch of InSight mission to Mars

University researchers test prototype spacesuits at Kennedy

Marshall: Advancing the technology for NASA's Journey to Mars

ENERGY TECH
Gadgets get smarter, friendlier at CES show

Congress to NASA: Hurry up on that 'habitation augmentation module'

NASA Reaches New Heights

Astronauts Tour Future White Room, Crew Access Tower

ENERGY TECH
China launches HD earth observation satellite

Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

ENERGY TECH
British astronaut's first spacewalk set for Jan 15

NASA Delivers New Video Experience On ISS

British astronaut dials wrong number on Xmas call from space

Space Station Receives New Space Tool to Help Locate Ammonia Leaks

ENERGY TECH
Arianespace starts year with record order backlog

Russian Space Forces launched 21 spacecraft in 2015

Russian Proton-M Carrier Rocket With Express-AMU1 Satellite Launched

45th Space Wing launches ORBCOMM; historically lands first stage booster

ENERGY TECH
Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

ENERGY TECH
New wave in tech: hacking the brain

Tech tethers dog lovers remotely to their pets

Thor's hammer to crush materials at 1 million atmospheres

Consumer Electronics Show awash with altered realities









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.