. 24/7 Space News .
NANO TECH
Turning up the heat for perfect nano diamonds
by Staff Writers
Washington DC (SPX) Feb 15, 2017


In this study, 3-D images of the strain fields in individual nanodiamond crystals were obtained with Bragg coherent diffraction imaging. With this method, the crystal is illuminated with a coherent X-ray beam which scatters to form a coherent diffraction pattern. A series of these diffraction patterns measured from the crystal are used to reconstruct the 3-D shape and, more importantly, the strain state of the crystal. One such 3-D image of a nanodiamond is shown here, with the surface coloration indicative of local strain. Image courtesy Stephan Hruszkewycz.

Quantum mechanics, the physics that governs nature at the atomic and subatomic scale, contains a host of new physical phenomena to explore quantum states at the nanoscale. Though tricky, there are ways to exploit these inherently fragile and sensitive systems for quantum sensing. One nascent technology in particular makes use of point defects, or single-atom misplacements, in nanoscale materials, such as diamond nanoparticles, to measure electromagnetic fields, temperature, pressure, frequency and other variables with unprecedented precision and accuracy.

Quantum sensing could revolutionize medical diagnostics, enable new drug development, improve the design of electronic devices and more.

For use in quantum sensing, the bulk nanodiamond crystal surrounding the point defect must be highly perfect. Any deviation from perfection, such as additional missing atoms, strain in the crystalline lattice of the diamond, or the presence of other impurities, will adversely affect the quantum behavior of the material. Highly perfect nanodiamonds are also quite expensive and difficult to make.

A cheaper alternative, say researchers at Argonne National Laboratory and the University of Chicago, is to take defect-ridden, low-quality, commercially manufactured diamonds, and then "heal" them.

In a paper published this week in APL Materials, from AIP Publishing, the researchers describe a method to heal diamond nanocrystals under high-temperature conditions, while visualizing the crystals in three dimensions using an X-ray imaging technique.

"Quantum sensing is based on the unique properties of certain optically active point defects in semiconductor nanostructures," said F. Joseph Heremans, an Argonne National Laboratory staff scientist and co-author on the paper.

These defects, such as the nitrogen-vacancy (NV) centers in diamond, are created when a nitrogen atom replaces a carbon atom adjacent to a vacancy in the diamond lattice structure. They are extremely sensitive to their environment, making them useful probes of local temperatures, as well as electric and magnetic fields, with a spatial resolution more than 100 times smaller than the thickness of a human hair.

Because diamonds are biologically inert, quantum sensors based on diamond nanoparticles, which can operate at room temperature and detect several factors simultaneously, could even be placed within living cells, where they could, according to Heremans, "image systems from the inside out."

Heremans and his colleagues, including Argonne's Wonsuk Cha and Paul Fuoss, as well as David Awschalom of the University of Chicago, set out to map the distribution of the crystal strain in nanodiamonds and to track the healing of these imperfections by subjecting them to high temperatures, up to 800 degrees Celsius in an inert helium environment.

"Our idea of the 'healing' process is that gaps in the lattice are filled as the atoms move around when the crystal is heated to high temperatures, thereby improving the homogeneity of the crystal lattice," said Stephan Hruszkewycz, also a staff scientist at Argonne and lead author on the paper.

This nanodiamond healing was monitored with a 3-D microscopy method called Bragg coherent diffraction imaging, performed by subjecting the crystals to a coherent X-ray beam at the Advanced Photon Source at Argonne. The X-ray beam that scatters off the nanodiamonds was detected and used to reconstruct the 3-D shape of the nanocrystal, "and, more importantly, the strain state of the crystal," Hruszkewycz said.

The researchers found that nanodiamonds "shrink" during the high-temperature annealing process, and surmise that this occurs because of a phenomenon called graphitization. This phenomenon occurs when the surface of the material is converted from the normal diamond lattice arrangement into graphite, a single layer of chicken-wire-like arranged carbon atoms.

The study marks the first time that Bragg coherent diffraction imaging has been shown to be useful at such high temperatures, a capability that, Hruszkewycz said, "enables the exploration of structural changes in important nanocrystalline materials at high temperatures that are difficult to access with other microscopy techniques."

Hruszkewycz added that the research represents "a significant step towards developing scalable methods of processing inexpensive, commercial nanodiamonds for quantum sensing and information processing."

The article, "In-situ study of annealing-induced strain relaxation in diamond nanoparticles using Bragg coherent diffraction imaging," is authored by Stephan O. Hruszkewycz, Wonsuk Cha, Paolo Andrich, Christopher P. Anderson, Andrew Ulvestad, Ross Harder, Paul Fuoss, David D. Awschalom and F. Joseph P. Heremans.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Supercomputing, experiment combine for first look at magnetism of real nanoparticle
Oak Ridge TN (SPX) Feb 07, 2017
Barely wider than a strand of human DNA, magnetic nanoparticles - such as those made from iron and platinum atoms - are promising materials for next-generation recording and storage devices like hard drives. Building these devices from nanoparticles should increase storage capacity and density, but understanding how magnetism works at the level of individual atoms is critical to getting the best ... read more


NANO TECH
NASA to develop oxygen recovery technologies for future deep space missions

Art and space enter a new dimension

Russia's first private space tourism craft flight test set for 2020

Next SpaceX mission will deliver slew of experiment payloads to ISS

NANO TECH
Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

SpaceX blasts off cargo from historic NASA launchpad

SpaceX aborts launch after 'odd' rocket engine behavior

Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

NANO TECH
Opportunity passes 44 kilometers of surface travel after 13 years

Scientists say Mars valley was flooded with water not long ago

Scientists shortlist three landing sites for Mars 2020

ISRO saves its Mars mission spacecraft from eclipse

NANO TECH
Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

NANO TECH
Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

NASA seeks partnerships with US companies to advance commercial space technologies

A New Space Paradigm

NANO TECH
Most stretchable elastomer for 3-D printing

After 15 years, SABER on TIMED Still Breaks Ground from Space

ANU scientists make new high-tech liquid materials

Curtiss-Wright offers COTS Module for measuring microgravity acceleration

NANO TECH
Exoplanetary moons formed by giant impacts could be detected by Kepler

The heart of a far-off star beats for its planet

Astronomy team finds more than 100 exoplanet candidates

Possibility of Silicon-Based Life Grows

NANO TECH
NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.