Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Turbulent times: When stars approach
by Staff Writers
Heidelberg, Germany (SPX) Feb 05, 2016

The simulation video visualizes the evolution of the density during a time span of 105 days. As the core of the red giant and the companion draw closer together, the gravity between them releases energy that passes into the common envelope. The turbulent instabilities that occur during this phase become clearly evident. Image courtesy Sebastian Ohlmann / HITS.

When we look at the night sky, we see stars as tiny points of light eking out a solitary existence at immense distances from Earth. But appearances are deceptive. More than half the stars we know of have a companion, a second nearby star that can have a major impact on their primary companions.

The interplay within these so-called binary star systems is particularly intensive when the two stars involved are going through a phase in which they are surrounded by a common envelope consisting of hydrogen and helium.

Compared to the overall time taken by stars to evolve, this phase is extremely short, so astronomers have great difficulty observing and hence understanding it. This is where theoretical models with highly compute-intensive simulations come in. Research into this phenomenon is relevant understanding a number of stellar events such as supernovae.

Using new methods, astrophysicists Sebastian Ohlmann, Friedrich Roepke, Ruediger Pakmor, and Volker Springel of the Heidelberg Institute for Theoretical Studies (HITS) have now made a step forward in modeling this phenomenon.

As they report in The Astrophysical Journal Letters, the scientists have successfully used simulations to discover dynamic irregularities that occur during the common-envelope phase and are crucial for the subsequent existence of binary star systems.

These so-called instabilities change the flow of matter inside the envelope, thus influencing the stars' distance from one another and determining, for example, whether a supernova will ensue and, if so, what kind it will be.

The article is the fruit of collaboration between two HITS research groups, the Physics of Stellar Objects (PSO) group and the Theoretical Astrophysics group (TAP). Prof. Volker Springel's Arepo code for hydrodynamic simulations was used and adapted for the modeling. It solves the equations on a moving mesh that follows the mass flow, and thus enhances the accuracy of the model.

More than half the stars we know of have evolved in binary star systems.

The energy for their luminosity comes from the nuclear fusion of hydrogen at the core of the stars. As soon as the hydrogen fueling the nuclear fusion is exhausted in the heavier of the two stars, the star core shrinks. At the same time, a highly extended stellar envelope evolves, consisting of hydrogen and helium. The star becomes a red giant.

As the envelope of the red giant goes on expanding, the companion star draws the envelope to itself via gravity, and part of the envelope flows towards it. In the course of this process the two stars come closer to one another. Finally, the companion star may fall into the envelope of the red giant and both stars are then surrounded by a common envelope.

As the core of the red giant and the companion draw closer together, the gravity between them releases energy that passes into the common envelope. As a result, the envelope is ejected and mixes with interstellar matter in the galaxy, leaving behind it a close binary star system consisting of the core of the giant and the companion star.

Sebastian Ohlmann of the PSO group explains why this common-envelope phase is important for our understanding of the way various star systems evolve: "Depending on what the system of the common envelope looks like initially, very different phenomena may ensue in the aftermath, such as thermonuclear supernovae."

Ohlmann and colleagues are investigating the run-up to these stellar explosions, which are among the most luminous events in the universe and can light up a whole galaxy. But modeling the systems that can lead to such explosions is bedeviled by major uncertainty in the description of the common-envelope phase.

One of the reasons for this is that the core of the giant is anything between a thousand and ten thousand times smaller than the envelope, so that spatial and temporal scale differences complicate the modeling process and make approximations necessary. The methodically innovative simulations performed by the Heidelberg scientists are a first step towards a better understanding of this phase.

Ohlmann, S. T., Roepke, F. K., Pakmor, R., and Springel, V. (2016): Hydrodynamic moving-mesh simulations of the common envelope phase in binary stellar systems, The Astrophysical Journal Letters, 816, L9, DOI: 10.3847/2041-8205/816/1/L9


Related Links
Heidelberg Institute for Theoretical Studies (HITS)
Stellar Chemistry, The Universe And All Within It

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Making new stars by 'adopting' stray cosmic gases
Chicago IL (SPX) Jan 28, 2016
Among the most striking objects in the universe are glittering, dense swarms of stars known as globular clusters. Astronomers had long thought globular clusters formed their millions of stars in bulk at around the same time, with each cluster's stars having very similar ages, much like twin brothers and sisters. Yet recent discoveries of young stars in old globular clusters have scrambled this t ... read more

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

Phase of the moon affects amount of rainfall

Russia postpones manned Lunar mission to 2035

Sandy Selfie Sent from NASA Mars Rover

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Getting real - on Mars

Astronaut rescue exercise proves Det. 3 command, control ready to support DoD, NASA

Innovations in the Air

Challenger disaster at 30: Did the tragedy change NASA for the better?

Voyager Mission Celebrates 30 Years Since Uranus

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

Russians spacewalk to retrieve biological samples

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

Russian Cosmonauts to Attach Thermal Insulation to ISS

NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Space Launch System's first flight will launch small Sci-Tech cubesats

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

Initial launcher assembly clears Ariane 5 for its payload integration process

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

NASA's ICESat-2 equipped with unique 3-D manufactured part

Novel 4-D printing method blossoms from botanical inspiration

Will Space Debris be Responsible for World War III?

Controlling the magnetic properties of individual iron atom

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.