Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Tunable windows for privacy, camouflage
by Staff Writers
Boston MA (SPX) Mar 21, 2016


With an applied voltage, the nanowires on either side of the glass become attracted to each other and move toward each other, squeezing and deforming the soft elastomer. Because the nanowires are scattered unevenly across the surface, the elastomer deforms unevenly. That uneven roughness causes light to scatter, turning the glass opaque. Image courtesy David Clarke/Harvard SEAS. For a larger version of this image please go here.

Say goodbye to blinds. Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have developed a technique that can quickly change the opacity of a window, turning it cloudy, clear or somewhere in between with the flick of a switch.

Tunable windows aren't new but most previous technologies have relied on electrochemical reactions achieved through expensive manufacturing. This technology, developed by David Clarke, the Extended Tarr Family Professor of Materials, and postdoctoral fellow Samuel Shian, uses geometry adjust the transparency of a window.

The research is described in journal Optics Letters.

The tunable window is comprised of a sheet of glass or plastic, sandwiched between transparent, soft elastomers sprayed with a coating of silver nanowires, too small to scatter light on their own.

But apply an electric voltage and things change quickly.

With an applied voltage, the nanowires on either side of the glass are energized to move toward each other, squeezing and deforming the soft elastomer. Because the nanowires are distributed unevenly across the surface, the elastomer deforms unevenly. The resulting roughness causes light to scatter, turning the glass opaque.

The change happens in less than a second.

It's like a frozen pond, said Shian.

"If the frozen pond is smooth, you can see through the ice. But if the ice is heavily scratched, you can't see through," said Shian.

Clarke and Shian found that the roughness of the elastomer surface depended on the voltage, so if you wanted a window that is only lightly clouded, you would apply less voltage than if you wanted a totally opaque window.

"Because this is a physical phenomenon rather than based on a chemical reaction, it is a simpler and potentially cheaper way to achieve commercial tunable windows," said Clarke.

Current chemical-based controllable windows use vacuum deposition to coat the glass, a process that deposits layers of a material molecule by molecule. It's expensive and painstaking. In Clarke and Shian's method, the nanowire layer can be sprayed or peeled onto the elastomer, making the technology scalable for larger architectural projects.

Next the team is working on incorporating thinner elastomers, which would require lower voltages, more suited for standard electrical supplies.

Harvard's Office of Technology Development has filed a patent application on the technology and is engaging with potential licensees in the glass manufacturing industry.

.


Related Links
Harvard School of Engineering and Applied Sciences
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
The world's blackest material is now in spray form
Newhaven, UK (SPX) Mar 21, 2016
A whole range of products can now take advantage of Vantablack's astonishing characteristics, thanks to the development of a new spray version of the world's blackest coating material. The new substance, Vantablack S-VIS, is easily applied at large scale to virtually any surface, whilst still delivering the proven performance of Vantablack. Vantablack's nano-structure absorbs virtually all ... read more


TECH SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

TECH SPACE
ExoMars probe imaged en route to Mars

New Gravity Map Gives Best View Yet Inside Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

TECH SPACE
British bacon sandwich en route to ISS tastes out of this world

NASA Selects American Small Business, Research Institution Projects for Continued Development

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

TECH SPACE
China's 1st space lab Tiangong-1 ends data service

China's aim to explore Mars

China to establish first commercial rocket launch company

China's ambition after space station

TECH SPACE
Unmanned Cygnus cargo ship launches to ISS on resupply run: NASA

Three new members join crew of International Space Station

Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Grandpa astronaut to break Scott Kelly's space record

TECH SPACE
MHI signs H-IIA launch deal for UAE Mars mission

Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

TECH SPACE
Most eccentric planet ever known flashes astronomers with reflected light

VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

TECH SPACE
3D-printed component flies in Trident missile tests

The world's blackest material is now in spray form

INRS takes giant step forward in generating optical qubits

Saab showcases Sea Giraffe 1X air and surface naval radar




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.