. 24/7 Space News .
CHIP TECH
To connect biology with electronics, be rigid, yet flexible
by Staff Writers
Seattle WA (SPX) Jun 23, 2017


Lead author Rajiv Giridharagopal, left, and co-author Lucas Flagg, right, standing next to an atomic force microscope. Credit Dane deQuilettes

The problem is a fundamental incompatibility in communication styles.

That conclusion might crop up during divorce proceedings, or describe a diplomatic row. But scientists designing polymers that can bridge the biological and electronic divide must also deal with incompatible messaging styles. Electronics rely on racing streams of electrons, but the same is not true for our brains.

"Most of our technology relies on electronic currents, but biology transduces signals with ions, which are charged atoms or molecules," said David Ginger, professor of chemistry at the University of Washington and chief scientist at the UW's Clean Energy Institute. "If you want to interface electronics and biology, you need a material that effectively communicates across those two realms."

Ginger is lead author of a paper published online June 19 in Nature Materials in which UW researchers directly measured a thin film made of a single type of conjugated polymer - a conducting plastic - as it interacted with ions and electrons. They show how variations in the polymer layout yielded rigid and non-rigid regions of the film, and that these regions could accommodate electrons or ions - but not both equally. The softer, non-rigid areas were poor electron conductors but could subtly swell to take in ions, while the opposite was true for rigid regions.

Organic semiconducting polymers are complex matrices made from repeating units of a carbon-rich molecule. An organic polymer that can accommodate both types of conduction - ion and electrons - is the key to creating new biosensors, flexible bioelectronic implants and better batteries. But differences in size and behavior between tiny electrons and bulky ions have made this no easy task. Their results demonstrate how critical the polymer synthesis and layout process is to the film's electronic and ionic conductance properties. Their findings may even point the way forward in creating polymer devices that can balance the demands of electronic transport and ion transport.

"We now understand the design principles to make polymers that can transport both ions and electrons more effectively," said Ginger. "We even demonstrate by microscopy how to see the locations in these soft polymer films where the ions are transporting effectively and where they aren't."

Ginger's team measured the physical and electrochemical properties of a film made out of poly(3-hexylthiophene), or P3HT, which is a relatively common organic semiconductor material. Lead author Rajiv Giridharagopal, a research scientist in the UW Department of Chemistry, probed the P3HT film's electrochemical properties in part by borrowing a technique originally developed to measure electrodes in lithium-ion batteries.

The approach, electrochemical strain microscopy, uses a needle-like probe suspended by a mechanical arm to measure changes in the physical size of an object with atomic-level precision. Giridharagopal discovered that, when a P3HT film was placed in an ion solution, certain regions of the film could subtly swell to let ions flow into the film.

"This was an almost imperceptible swelling - just 1 percent of the film's total thickness," said Giridharagopal. "And using other methods, we discovered that the regions of the film that could swell to accommodate ion entry also had a less rigid structure and polymer arrangement."

More rigid and crystalline regions of the film could not swell to let in ions. But the rigid areas were ideal patches for conducting electrons.

Ginger and his team wanted to confirm that structural variations in the polymer were the cause of these variations in electrochemical properties of the film. Co-author Christine Luscombe, a UW associate professor of materials science and engineering and member of the Clean Energy Institute, and her team made new P3HT films that had different levels of rigidity based on variations in polymer arrangement.

By subjecting these new films to the same array of tests, Giridharagopal showed a clear correlation between polymer arrangement and electrochemical properties. The less rigid and more amorphous polymer layouts yielded films that could swell to let in ions, but were poor conductors of electrons. More crystalline polymer arrangements yielded more rigid films that could easily conduct electrons. These measurements demonstrate for the first time that small structural differences in how organic polymers are processed and assembled can have major consequences for how the film accommodates ions or electrons. It may also mean that this tradeoff between the needs of ion and electrons is unavoidable. But these results give Ginger hope that another solution is possible.

"The implication of these findings is that you could conceivably embed a crystalline material - which could transport electrons - within a material that is more amorphous and could transport ions," said Ginger. "Imagine that you could harness the best of both worlds, so that you could have a material that is able to effectively transport electrons and swell with ion uptake - and then couple the two with one another."

Research Report

CHIP TECH
Seeing the invisible with a graphene-CMOS integrated device
Washington DC (SPX) Jun 20, 2017
Silicon based CMOS (Complementary metal-oxide semiconductors) technology has truly shaped our world. It enables most of the electronics that we rely on today including computers, smartphones and digital cameras. However, to continue the path of progress in the electronics industry new technology must be developed and a key feature of this is the ability to integrate CMOS with other semiconductor ... read more

Related Links
University of Washington
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Return to the blue

NASA Selects Army Surgeon for Astronaut Training

Teachers doubt most students interested in subjects that promote space careers

Plants to feed Earth and beyond

CHIP TECH
Orbex reveals space rocket factory

Developing Landing Tech for Space

Amtrak to SpaceX Launch, Wifi hack, Spectacular trip, But where's my SatPhone...

SLS Core Stage Production Continues for Rocket's First Flight

CHIP TECH
Mars rover Opportunity on walkabout near crater rim

No One Under 20 Has Experienced a Day Without NASA at Mars

Mars Orbiter spots rover ascending Mount Sharp

Opportunity Straightens Wheel, Resumes Driving

CHIP TECH
China's cargo spacecraft completes second docking with space lab

China to launch four more probes before 2021

New broadcasting satellite fails to enter preset orbit

China launches remote-sensing micro-nano satellites

CHIP TECH
Gravitational wave mission selected, planet-hunting mission moves forward

Boeing Streamlining Defense and Space Unit to boost competitiveness

Trudeau under pressure to reject China bid for satellite firm

Jumpstart goes into alliance with major aerospace and defence group ADS

CHIP TECH
A new virtual approach to science in space

Universal stabilization

Helium droplets offer new precision to single-molecule laser measurement

Magnetic space tug could target dead satellites

CHIP TECH
Could a Dedicated Mission to Enceladus Detect Microbial Life There

NASA discovers 10 new Earth-size exoplanets

New branch in family tree of exoplanets discovered

Finding new Earths: PLATO spacecraft to be built

CHIP TECH
NASA Completes Study of Future 'Ice Giant' Mission Concepts

The curious case of the warped Kuiper Belt

King of the Gods: Jupiter Dated to Be Oldest Planet in the Solar System

New Horizons Team Digs into New Data on Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.