. 24/7 Space News .
CLIMATE SCIENCE
Tiny shells indicate big changes to global carbon cycle
by Staff Writers
Davis CA (SPX) May 31, 2017


illustration only

Experiments with tiny, shelled organisms in the ocean suggest big changes to the global carbon cycle are underway, according to a study from the University of California, Davis.

For the study, published in the journal Scientific Reports, scientists raised foraminifera - single-celled organisms about the size of a grain of sand - at the UC Davis Bodega Marine Laboratory under future, high CO2 conditions.

These tiny organisms, commonly called "forams," are ubiquitous in marine environments and play a key role in food webs and the ocean carbon cycle.

After exposing them to a range of acidity levels, UC Davis scientists found that under high CO2, or more acidic, conditions, the foraminifera had trouble building their shells and making spines, an important feature of their shells.

They also showed signs of physiological stress, reducing their metabolism and slowing their respiration to undetectable levels.

This is the first study of its kind to show the combined impact of shell building, spine repair, and physiological stress in foraminifera under high CO2 conditions. The study suggests that stressed and impaired foraminifera could indicate a larger scale disruption of carbon cycling in the ocean.

Off Balance
As a marine calcifier, foraminifera use calcium carbonate to build their shells, a process that plays an integral part in balancing the carbon cycle.

Normally, healthy foraminifera calcify their shells and sink to the ocean floor after they die, taking the calcite with them. This moves alkalinity, which helps neutralize acidity, to the seafloor.

When foraminifera calcify less, their ability to neutralize acidity also lessens, making the deep ocean more acidic.

But what happens in the deep ocean doesn't stay in the deep ocean.

Impacts For Thousands Of Years
"It's not out-of-sight, out-of-mind," said lead author Catherine Davis, a Ph.D. student at UC Davis during the study and currently a postdoctoral associate at the University of South Carolina.

"That acidified water from the deep will rise again. If we do something that acidifies the deep ocean, that affects atmospheric and ocean carbon dioxide concentrations on time scales of thousands of years."

Davis said the geologic record shows that such imbalances have occurred in the world's oceans before, but only during times of major change.

"This points to one of the longer time-scale effects of anthropogenic climate change that we don't understand yet," Davis said.

Upwelling Brings 'future' To Surface
One way acidified water returns to the surface is through upwelling, when strong winds periodically push nutrient-rich water from the deep ocean up to the surface. Upwelling supports some of the planet's most productive fisheries and ecosystems. But additional anthropogenic, or human-caused, CO2 in the system is expected to impact fisheries and coastal ecosystems.

UC Davis' Bodega Marine Laboratory in Northern California is near one of the world's most intense coastal upwelling areas. At times, it experiences conditions most of the ocean isn't expected to experience for decades or hundreds of years.

"Seasonal upwelling means that we have an opportunity to study organisms in high CO2, acidic waters today - a window into how the ocean may look more often in the future," said co-author Tessa Hill, an associate professor in earth and planetary sciences at UC Davis.

"We might have expected that a species of foraminifera well-adapted to Northern California wouldn't respond negatively to high CO2 conditions, but that expectation was wrong. This study provides insight into how an important marine calcifier may respond to future conditions, and send ripple effects through food webs and carbon cycling."

The study's other co-authors include Emily Rivest from UC Davis and Virginia Institute of Marine Science, UC Davis professors Brian Gaylord and Eric Sanford, and UC Davis associate research scientist Ann Russell.

CLIMATE SCIENCE
As US weighs climate pullout, UN wants world to be more ambitious
United Nations, United States (AFP) May 30, 2017
UN Secretary-General Antonio Guterres on Tuesday urged the world to raise its ambition in implementing the Paris climate agreement as the United States weighed pulling out of the landmark emissions-cutting deal. Making his first address on climate since taking the UN helm five months ago, Guterres said it was "absolutely essential" that the world implements the 2015 agreement "with increased ... read more

Related Links
University of California - Davis
Climate Science News - Modeling, Mitigation Adaptation


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CLIMATE SCIENCE
MIT researchers engineer shape-shifting food

DARPA Picks Design for Next-Generation Spaceplane

SDL-Supported SmallSat Launched from International Space Station

'Victory' for US astronauts on critical spacewalk to replace power box

CLIMATE SCIENCE
Successful launch puts New Zealand in space race

Russia to create new Super-Heavy Class rocket after 2025

Neptune: Neutralizer-free plasma propulsion

Spaceflight buys Electron Rocket from Rocket Lab

CLIMATE SCIENCE
Preparations Continue Before Driving into 'Perseverance Valley'

Schiaparelli landing investigation completed

HI-SEAS Mission V Mars simulation marks midway point

Deciphering the fluid floorplan of a planet

CLIMATE SCIENCE
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

CLIMATE SCIENCE
Satellite industry supports FCC proposal to reduce internet regulations for service providers

AsiaSat 9 ready for shipment

SES Networks offers new hybrid resiliency service

Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

CLIMATE SCIENCE
New method allows real-time monitoring of irradiated materials

Neutron lifetime measurements take new shape for in situ detection

Solving the riddle of the snow globe

One-dimensional crystals for low-temperature thermoelectric cooling

CLIMATE SCIENCE
Water forms superstructure around DNA, new study shows

How RNA formed at the origins of life

NASA Scientist Parlays Experience to Build Ocean Worlds Instrument

Scientists propose synestia, a new type of planetary object

CLIMATE SCIENCE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.