. 24/7 Space News .
CHIP TECH
Tiny lasers enable Microprocessors to run faster, less power-hungry
by Staff Writers
Washington DC (SPX) Jun 03, 2016


File image.

A group of scientists from Hong Kong University of Science and Technology; the University of California, Santa Barbara; Sandia National Laboratories and Harvard University were able to fabricate tiny lasers directly on silicon - a huge breakthrough for the semiconductor industry and well beyond.

For more than 30 years, the crystal lattice of silicon and of typical laser materials could not match up, making it impossible to integrate the two materials - until now.

As the group reports in Applied Physics Letters, from AIP Publishing, integrating subwavelength cavities - the essential building blocks of their tiny lasers - onto silicon enabled them to create and demonstrate high-density on-chip light-emitting elements.

To do this, they first had to resolve silicon crystal lattice defects to a point where the cavities were essentially equivalent to those grown on lattice-matched gallium arsenide (GaAs) substrates. Nano-patterns created on silicon to confine the defects made the GaAs-on-silicon template nearly defect free and quantum confinement of electrons within quantum dots grown on this template made lasing possible.

The group was then able to use optical pumping, a process in which light, rather than electrical current, "pumps" electrons from a lower energy level in an atom or molecule to a higher level, to show that the devices work as lasers.

"Putting lasers on microprocessors boosts their capabilities and allows them to run at much lower powers, which is a big step toward photonics and electronics integration on the silicon platform," said professor Kei May Lau, Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology.

Traditionally, the lasers used for commercial applications are quite large - typically 1 mm x 1 mm. Smaller lasers tend to suffer from large mirror loss.

But the scientists were able to overcome this issue with "tiny whispering gallery mode lasers - only 1 micron in diameter - that are 1,000 times shorter in length, and 1 million times smaller in area than those currently used," said Lau.

Whispering gallery mode lasers are considered an extremely attractive light source for on-chip optical communications, data processing and chemical sensing applications.

"Our lasers have very low threshold and match the sizes needed to integrate them onto a microprocessor," Lau pointed out. "And these tiny high-performance lasers can be grown directly on silicon wafers, which is what most integrated circuits (semiconductor chips) are fabricated with."

In terms of applications, the group's tiny lasers on silicon are ideally suited for high-speed data communications.

"Photonics is the most energy-efficient and cost-effective method to transmit large volumes of data over long distances. Until now, laser light sources for such applications were 'off chip' - missing - from the component," Lau explained. "Our work enables on-chip integration of lasers, an [indispensable] component, with other silicon photonics and microprocessors."

The researchers expect to see this technology emerge in the market within 10 years.

Next, the group is "working on electrically pumped lasers using standard microelectronics technology," Lau said.

The article, "Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates," is authored by Yating Wan, Qiang Li, Alan Liu, Weng W. Chow, Arthur C. Gossard, John E. Bowers, Evelyn L. Hu and Kei May Lau. The article appeared in the journal Applied Physics Letters on May 31, 2016 [DOI: 10.1063/1.4952600]


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Scientists create 'magnetic charge ice'
Argonne IL (SPX) May 30, 2016
A team of scientists working at the U.S. Department of Energy's (DOE) Argonne National Laboratory has created a new material, called "rewritable magnetic charge ice," that permits an unprecedented degree of control over local magnetic fields and could pave the way for new computing technologies. The scientists' research report on development of magnetic charge ice is published in the May 2 ... read more


CHIP TECH
Russian Firm Develops Project of Reusable Spacecraft for Lunar Missions

SwRI scientists discover fresh lunar craters

NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

CHIP TECH
Opportunity investigating soil exposed by rover wheel

Mars makes closest approach to Earth in 11 years

SwRI scientists discover evidence of ice age at Martian north pole

Mars Webcam goes pro

CHIP TECH
Fun LoL to Teach Machines How to Learn More Efficiently

International Partners Provide Science Satellites for first SLS mission

'Metabolomics: You Are What You Eat' video

ISS Astronauts Enjoy Dish Cooked Up by Students from Hampton, Virginia

CHIP TECH
Bolivia takes over operations of Chinese-built satellite

China mulls teaming up with foreign agencies to explore Moon

China's new launch center prepares for maiden mission

China, U.S. hold first dialogue on outer space safety

CHIP TECH
NASA inflates spare room in space

NASA to try again to inflate spare room in space

Temporary space station habitat fails to inflate

International Space Cooperation Strongest in Times of Political Crises

CHIP TECH
SpaceX makes fourth successful rocket landing

Arianespace to supply payload dispenser systems for OneWeb constellation

UK's First Spaceport Could Be Beside the Sea

SpaceX Return of Samples Marks Next Step in One-Year Mission Science

CHIP TECH
Astronomers find giant planet around very young star

Planet 1,200 Light-Years Away Is Good Prospect for a Habitable World

Kepler-223 System Offers Clues to Planetary Migration

Star Has Four Mini-Neptunes Orbiting in Lock Step

CHIP TECH
Automating DNA origami opens door to many new uses

Compound switches between liquid and solid states when exposed to light or heat

Spin glass physics with trapped ions

NIST, partners create standard to improve sustainable manufacturing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.