Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
The weakest magnetic field in the solar system
by Staff Writers
Munich, Germany (SPX) May 15, 2015


An international team of physicists has developed a shielding that dampens low frequency magnetic fields more than a million-fold. Using this mechanism, they have created a space that boasts the weakest magnetic field of our solar system. The physicists now intend to carry out precision experiments there. Image courtesy Astrid Eckert / TUM. For a larger version of this image please go here.

Magnetic fields easily penetrate matter. Creating a space practically devoid of magnetic fields thus presents a great challenge. An international team of physicists has now developed a shielding that dampens low frequency magnetic fields more than a million-fold. Using this mechanism, they have created a space that boasts the weakest magnetic field of our solar system. The physicists now intend to carry out precision experiments there.

Magnetic fields exist everywhere in the universe. Here on the Earth, we are permanently exposed to both natural and artificial magnetic fields. In Central Europe the Earth's ever-present magnetic field measures 48 microtesla. On top of this come local magnetic fields generated by transformers, motors, cranes, metal doors and the like.

A group of physicists headed by Professor Peter Fierlinger, physicist at the Technische Universitat Munchen (TUM) and researcher of the Cluster of Excellence "Origin and Structure of the Universe" have now successfully created 4.1 cubic meter space at the Garching research campus in which permanent and temporally variable magnetic fields are reduced over a million-fold.

This is accomplished using a magnetic shielding comprising various layers of a highly magentizable alloy. The ensuing magnetic attenuation results in a residual magnetic field inside the shield that is even smaller than that in the depths of our solar system. The approach improves the attenuation of previous set-ups more than ten-fold.

Precision experiments on the electric dipole moment of the neutron
Reducing electromagnetic noise is a key prerequisite for many high-precision experiments in physics - but also in biology and medicine. In fundamental physics, the highest degree of magnetic shielding is essential when making precision measurements of miniscule effects in phenomena that drove the early development of our universe.

Peter Fierlinger's team is currently developing an experiment to determine the charge distribution in neutrons -referred to by physicists as the electric dipole moment. Neutrons are nuclear particles that have a tiny magnetic moment but are electrically neutral. They comprise three quarks, whose charges cancel each other out.

However, scientists suspect that neutrons have a tiny electric dipole moment. Unfortunately, past measurements were not sufficiently precise. The new, nearly magnetic field free space provides the requisite conditions for improving measurements of the electric dipole moment by a factor of 100. This opens the door to a realm of the theoretically predicted scale of the phenomenon.

Physics beyond the limits oft the Standard Model
"This kind of measurement would be of fundamental significance in particle physics and swing wide open the door to physics beyond the Standard Model of particle physics," explains Peter Fierlinger. The Standard Model describes the characteristics of all known elementary particles to a high degree of precision.

Yet, there are still phenomena that cannot be adequately explained: Gravity, for example, is not even considered in this model. The Standard Model also fails to predict the behavior of particles at very high energies as they prevailed in the early universe. And, it provides no explanation for why matter and antimatter from the Big Bang did not annihilate each other completely, but rather a small amount of matter remained from which we and our surrounding, visible universe are ultimately formed.

Physicists therefore attempt to create short-lived conditions as were prevalent in the early universe using particle accelerators like the Large Hadron Collider (LHC) at CERN. They smash particles into each other at high energies, in particular to create new particles.

Alternatives to high-energy physics
The experiments of the TUM scientists complement those in high-energy physics: "Our high-precision experiments investigate the nature of particles at energy scales that will likely not be reached by current or future generations of particle accelerators," says doctoral candidate Tobias Lins, who worked on the magnetic shield setup in Peter Fierlinger's laboratory.

Exotic and hitherto unknown particles could alter the properties of known particles. Thus, even small deviations in particle characteristics could provide evidence for new, previously unknown particles.

In addition to scientists of TU Munchen, physicists of the Physikalisch-Technischen Bundesanstalt Berlin, the University of Illinois at Urbana-Champaign, USA, the University of Michigan, USA, and IMEDCO AG in Switzerland contributed to the experimental setup and measurements of magnetic attenuation. Funding was provided by the German Research Foundation (DFG) in the context of the Priority Program SPP 1491 and the Custer of Excellence Origin and Structure of the Universe. I. Altarev et al.: A large-scale magnetic shield with 10^6 damping at mHz frequencies; Journal of Applied Physics, May 12, 2015 - DOI: 10.1063/1.4919366.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technische Universitaet Muenchen
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
NSF and CERN sign new partnership for finding particles
Washington DC (SPX) May 14, 2015
A new agreement between the United States and the European Organization for Nuclear Research (CERN) will pave the way for renewed collaboration in particle physics, promising to yield new insights into fundamental particles and the nature of matter and our universe. The agreement, signed in a White House ceremony by the U.S. Department of Energy, U.S. National Science Foundation (NSF) and ... read more


TIME AND SPACE
NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

TIME AND SPACE
Technique for finding signs of life on the Red Planet

Mystery Methane on Mars: The Saga Continues

Auroras on Mars

Quick Detour by NASA Mars Rover Checks Ancient Valley

TIME AND SPACE
Russia races to replace Sarah Brightman as space tourist

Photonic Laser Thruster Propels Simulated Spacecraft

Potentially Revolutionary Mission Heading for 2016 Launch

High-tech Analysis of Orion Heat Shield Underway

TIME AND SPACE
3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

TIME AND SPACE
ISS Partners Adjust Spacecraft Schedule

Samantha's longer stay on ISS

Italian astronaut shows how to use restroom on ISS online

Russia delays return of ISS crew members after supply ship failure

TIME AND SPACE
Report: SpaceX Falcon 9 rocket certified to fly NASA missions

DirecTV-15 and SKY Mexico-1 integrated for Ariane 5 heavy-lift mission

Russia to Launch US Comms Satellite Into Space

Fifth Vega takes shape for its flight with Sentinel-2A

TIME AND SPACE
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

TIME AND SPACE
Researchers develop artificial membranes with programmable surfaces

Tiny silicone spheres come out of the mist

OPALS Boosts Space-to-Ground Optical Communications Research

Patria Space unit now part of RUAG




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.