Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
The strain allows to control the magnetic properties of individual iron atom
by Staff Writers
Warsaw, Poland (SPX) Feb 02, 2016


The iron Fe2+ atom embedded in a semiconductor exhibits a single non-degenerate ground state with zero magnetic moment. A team of scientists from the University of Warsaw has just shown that by using sufficiently large strain (which is visualized here as an effect of a machine press) it is possible to tailor the energy spectrum of the iron atom to obtain doubly degenerate (magnetic) ground state. Such a state can be utilized for storage and processing of the quantum information. This discovery has been just published in prestigious research journal of Nature Communications. Image courtesy FUW, A. Bogucki. For a larger version of this image please go here.

The iron Fe2+ atom embedded in a semiconductor exhibits a single non-degenerate ground state of zero magnetic moment. A team of scientists from the University of Warsaw has just shown that by using sufficiently large strain it is possible to tailor the energy spectrum of the iron atom to obtain doubly degenerate (magnetic) ground state. Such a state can be utilized for storage and processing of the quantum information. [T. Smolenski..., Nature Commun. 7,10484(2016)].

As the water freezes in a bottle, the molecules move farther apart from each other, which results in a strain that eventually may shatter the glass. Similarly, different crystals that are fused together might be stressed as if they would be compressed or stretched by a pressure many times larger than the pressure at the bottom of ocean. The macroscopic bulk crystals cannot withstand such a high stresses, which cause dislocations or even may break the crystals apart.

However, a nanometer size crystals, nanocrystals, are able to sustain such a built-in stress, which substantially modifies the physical properties of the atoms embedded inside these nanocrystals. This phenomenon has been already employed, for example, to optimize the transistor operating speed by integrating nanostructures of different interatomic distances.

Tomasz Smolenski and co-workers from the Faculty of Physics, University of Warsaw have examined how the properties of the iron atoms are affected by the high strain produced by semiconductor nanostructures.

Although the iron is usually associated with magnetism, it is known already from the 60's that the iron atom of 2+ charge state becomes non-magnetic after incorporation into a typical semiconductor. To be more specific, the d-shell electrons of the iron atom have only one lowest-energy configuration, in which the total magnetic moment of the iron vanishes, even upon the application of a small external magnetic field.

It turned out, however, that under the influence of a sufficiently large strain the energy spectrum of the iron electronic states is qualitatively different and comprises two lowest-energy spin states. As a consequence, non-zero magnetic moment of the iron atom placed in a strained environment can be easily induced by a tiny magnetic field. This discovery has been just published in prestigious research journal of Nature Communications [1].

Both the experiment and theoretical modeling have been carried out at the University of Warsaw. Using molecular beam epitaxy, Tomasz Smolenski and co-workers fabricated zinc selenide crystals integrated with cadmium selenide nanocrystals of larger lattice constant. This led to the growth of highly-strained cadmium selenide quantum dots embedded in a zinc selenide barrier.

Additionally, an appropriately adjusted amount of the iron atoms was added during the formation of the quantum dots, so that some of them contained exactly one iron atom. The presence of such an atom, owing to its magnetic properties, modified the character of the light emission from such quantum dots.

Therefore, by means of the photoluminescence studies of a single quantum dot containing an individual iron atom it was possible to determine both the electronic configuration and the magnetic properties of the iron atom. Furthermore, it was also found that the magnetic moment of this atom can be induced by light.

Consequently, the new system - a quantum dot with a single iron atom - has become next excellent candidate for applications involving storage and manipulation of the quantum information both in the field of spintronics - electronics utilizing spins instead of electric charges, and solotronics - optoelectronics based on solitary dopants.

Physics and Astronomy first appeared at the University of Warsaw in 1816, under the then Faculty of Philosophy. In 1825 the Astronomical Observatory was established. Currently, the Faculty of Physics' Institutes include Experimental Physics, Theoretical Physics, Geophysics, Department of Mathematical Methods and an Astronomical Observatory. Research covers almost all areas of modern physics, on scales from the quantum to the cosmological.

The Faculty's research and teaching staff includes ca. 200 university teachers, of which 88 are employees with the title of professor. The Faculty of Physics, University of Warsaw, is attended by ca. 1000 students and more than 170 doctoral students.

Science Paper: Magnetic ground state of an individual Fe2+ ion in strained semiconductor nanostructure, T. Smolenski, T. Kazimierczuk, J. Kobak, M. Goryca, A. Golnik, P. Kossacki, W. Pacuski, Nature Communications 7, 10484 (2016).

.


Related Links
Faculty of Physics University of Warsaw
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Breakthrough enables ultra-fast transport of electrical charges in polymers
Umea, Sweden (SPX) Jan 29, 2016
A research team at Umea University in Sweden has showed, for the first time, that a very efficient vertical charge transport in semiconducting polymers is possible by controlled chain and crystallite orientation. These pioneering results, which enhance charge transport in polymers by more than 1,000 times, have implications for organic opto-electronic devices and were recently published in the j ... read more


TECH SPACE
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

TECH SPACE
Mars Rover Opportunity Busy Through Depth of Winter

India to Cooperate With France on Next Mission to Mars

Opportunity rock abrasion tool conducts two rock grinds

Curiosity gets a good taste of scooped, sieved sand

TECH SPACE
Voyager Mission Celebrates 30 Years Since Uranus

Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

Space: The here-and-now frontier

TECH SPACE
China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

China Plans More Than 20 Space Launches in 2016

TECH SPACE
Russian Cosmonauts to Attach Thermal Insulation to ISS

Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

TECH SPACE
70th consecutive successful launch for Ariane 5

AMOS-6 Scheduled for May 2016 Launch by Space-X

Arianespace's year-opening Ariane 5 mission is approved for launch

SpaceX Falcon 9 upgrade certified for National Security Space launches

TECH SPACE
Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

TECH SPACE
Energy harvesting via smart materials

A new quantum approach to big data

Novel 4-D printing method blossoms from botanical inspiration

Apple quietly working on virtual reality: report




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.