. 24/7 Space News .
TECH SPACE
The sharpest laser in the world
by Staff Writers
Berlin, Germany (SPX) Jul 03, 2017


A silicon resonator

No one had ever come so close to the ideal laser before: theoretically, laser light has only one single color (also frequency or wavelength). In reality, however, there is always a certain linewidth. With a linewidth of only 10 mHz, the laser that the researchers from the Physikalisch-Technische Bundesanstalt (PTB) have now developed together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology and the University of Colorado Boulder, has established a new world record.

This precision is useful for various applications such as optical atomic clocks, precision spectroscopy, radioastronomy and for testing the theory of relativity. The results have been published in the current issue of Physical Review Letters.

Lasers were once deemed a solution without problems - but that is now history. More than 50 years have passed since the first technical realization of the laser, and we cannot imagine how we could live without them today. Laser light is used in numerous applications in industry, medicine and information technologies. Lasers have brought about a real revolution in many fields of research and in metrology - or have even made some new fields possible in the first place.

One of a laser's outstanding properties is the excellent coherence of the emitted light. For researchers, this is a measure for the light wave's regular frequency and linewidth. Ideally, laser light has only one fixed wavelength (or frequency). In practice, the spectrum of most types of lasers can, however, reach from a few kHz to a few MHz in width, which is not good enough for numerous experiments requiring high precision.

Research has therefore focused on developing ever better lasers with greater frequency stability and a narrower linewidth. Within the scope of a nearly 10-year-long joint project with the US colleagues from JILA in Boulder, Colorado, a laser has now been developed at PTB whose linewidth is only 10 mHz (0.01 Hz), hereby establishing a new world record.

"The smaller the linewidth of the laser, the more accurate the measurement of the atom's frequency in an optical clock. This new laser will enable us to decisively improve the quality of our clocks", PTB physicist Thomas Legero explains.

In addition to the new laser's extremely small linewidth, Legero and his colleagues found out by means of measurements that the emitted laser light's frequency was more precise than what had ever been achieved before.

Although the light wave oscillates approx. 200 trillion times per second, it only gets out of sync after 11 seconds. By then, the perfect wave train emitted has already attained a length of approx. 3.3 million kilometers. This length corresponds to nearly ten times the distance between the Earth and the moon.

Since there was no other comparably precise laser in the world, the scientists working on this collaboration had to set up two such laser systems straight off. Only by comparing these two lasers was it possible to prove the outstanding properties of the emitted light.

The core piece of each of the lasers is a 21-cm long Fabry-Perot silicon resonator. The resonator consists of two highly reflecting mirrors which are located opposite each other and are kept at a fixed distance by means of a double cone. Similar to an organ pipe, the resonator length determines the frequency of the wave which begins to oscillate, i.e., the light wave inside the resonator.

Special stabilization electronics ensure that the light frequency of the laser constantly follows the natural frequency of the resonator. The laser's frequency stability - and thus its linewidth - then depends only on the length stability of the Fabry-Perot resonator.

The scientists at PTB had to isolate the resonator nearly perfectly from all environmental influences which might change its length. Among these influences are temperature and pressure variations, but also external mechanical perturbations due to seismic waves or sound.

They have attained such perfection in doing so that the only influence left was the thermal motion of the atoms in the resonator. This "thermal noise" corresponds to the Brownian motion in all materials at a finite temperature, and it represents a fundamental limit to the length stability of a solid. Its extent depends on the materials used to build the resonator as well as on the resonator's temperature.

For this reason, the scientists of this collaboration manufactured the resonator from single-crystal silicon which was cooled down to a temperature of -150 C. The thermal noise of the silicon body is so low that the length fluctuations observed only originate from the thermal noise of the dielectric SiO2/Ta2O5 mirror layers.

Although the mirror layers are only a few micrometers thick, they dominate the resonator's length stability. In total, the resonator length, however, only fluctuates in the range of 10 attometers. This length corresponds to no more than a ten-millionth of the diameter of a hydrogen atom. The resulting frequency variations of the laser therefore amount to less than 4 + 10-17 of the laser frequency.

The new lasers are now being used both at PTB and at JILA in Boulder to further improve the quality of optical atomic clocks and to carry out new precision measurements on ultracold atoms. At PTB, the ultrastable light from these lasers is already being distributed via optical waveguides and is then used by the optical clocks in Braunschweig.

"In the future, it is planned to disseminate this light also within a European network. This plan would allow even more precise comparisons between the optical clocks in Braunschweig and the clocks of our European colleagues in Paris and London", Legero says. In Boulder, a similar plan is in place to distribute the laser across a fiber network that connects between JILA and various NIST labs.

The scientists from this collaboration see further optimization possibilities. With novel crystalline mirror layers and lower temperatures, the disturbing thermal noise can be further reduced. The linewidth could then even become smaller than 1 mHz.

Scientific publication: D. G. Matei, T. Legero, S. Hafner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, U. Sterr: 1.5 um lasers with sub-10-mHz linewidth. Physical Review Letters 118 (2017)

TECH SPACE
Changing the color of laser light on the femtosecond time scale
Tokyo, Japan (SPX) Jun 16, 2017
How can the color of laser light be changed? One popular method to achieve this is the so-called second harmonic generation (SHG) effect, which doubles the frequency of light and hence changes its color. However, observing this nonlinear effect requires a polar crystal in which inversion symmetry is broken. For this reason, identifying crystals that can elicit strong SHG has been an import ... read more

Related Links
Physikalisch-Technische Bundesanstalt
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Silicon-on-Seine: world's biggest tech incubator opens in Paris

Return to the blue

NASA Selects Army Surgeon for Astronaut Training

Teachers doubt most students interested in subjects that promote space careers

TECH SPACE
Falcon 9 launches Bulgaria's first geostationary communications satellite

India launches PSLV rocket with 31 satellites

Orbex reveals space rocket factory

Developing Landing Tech for Space

TECH SPACE
No One Under 20 Has Experienced a Day Without NASA at Mars

Mars Orbiter spots rover ascending Mount Sharp

India's Mars Orbiter Mission Completes First 1,000 Earth Days

University Students Mine for Water at NASA's Mars Ice Challenge

TECH SPACE
China's cargo spacecraft completes second docking with space lab

China to launch four more probes before 2021

New broadcasting satellite fails to enter preset orbit

China launches remote-sensing micro-nano satellites

TECH SPACE
Gravitational wave mission selected, planet-hunting mission moves forward

Boeing Streamlining Defense and Space Unit to boost competitiveness

Trudeau under pressure to reject China bid for satellite firm

Jumpstart goes into alliance with major aerospace and defence group ADS

TECH SPACE
True romance in the air at Tokyo virtual reality show

Smooth propagation of spin waves using gold

Lightweight steel production breakthrough: Brittle phases controlled

A bioplastic derived from soy protein which can absorb up to 40 times its own weight

TECH SPACE
Could a Dedicated Mission to Enceladus Detect Microbial Life There

New branch in family tree of exoplanets discovered

NASA discovers 10 new Earth-size exoplanets

Finding new Earths: PLATO spacecraft to be built

TECH SPACE
NASA Completes Study of Future 'Ice Giant' Mission Concepts

King of the Gods: Jupiter Dated to Be Oldest Planet in the Solar System

New Horizons Team Digs into New Data on Next Flyby Target

A whole new Jupiter with first science results from Juno









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.