Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

The iron stepping stones to better wearable tech without semiconductors
by Staff Writers
Houghton MI (SPX) Feb 10, 2016

Physics professor Yoke Khin Yap explains how electrons jump between quantum dots and why flexible nanotubes could improve wearable electronics. Image courtesy Michigan Tech, Ben Brainerd. Watch a video on the research here.

The road to more versatile wearable technology is dotted with iron. Specifically, quantum dots of iron arranged on boron nitride nanotubes (BNNTs). The new material is the subject of a study to be published in Scientific Reports later this week, led by Yoke Khin Yap, a professor of physics at Michigan Technological University.

Yap says the iron-studded BNNTs are pushing the boundaries of electronics hardware. The transistors modulating electron flow need an upgrade. "Look beyond semiconductors," he says, explaining that materials like silicon semiconductors tend to overheat, can only get so small and leak electric current.

The key to revamping the fundamental base of transistors is creating a series of stepping-stones that use quantum tunneling. The nanotubes are the mainframe of this new material. BNNTs are great insulators and terrible at conducting electricity. While at first that seems like an odd choice for electronics, the insulating effect of BNNTs is crucial to prevent current leakage and overheating. Additionally, electron flow will only occur across the metal dots on the BNNTs.

In past research, Yap and his team used gold for quantum dots, placed along a BNNT in a tidy line. With enough energy potential, the electrons are repelled by the insulating BNNT and hopscotch from gold dot to gold dot. This electron movement is called quantum tunneling.

"Imagine this as a river, and there's no bridge; it's too big to hop over," Yap says. "Now, picture having stepping stones across the river - you can cross over, but only when you have enough energy to do so."

Unlike with semiconductors, there is no classical resistance with quantum tunneling. No resistance means no heat. Plus, these materials are very small; the nanomaterials enable the transistors to shrink as well. An added bonus is that BNNTs are also quite flexible, a boon for wearable electronics.


Related Links
Michigan Technological University
Satellite-based Internet technologies

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Apple asks top US court to reject Samsung appeal
Washington (AFP) Feb 08, 2016
Apple has asked the US Supreme Court to dismiss Samsung's appeal in the blockbuster patent case between the two smartphone giants, saying the ruling followed "well-established" legal precedent. A filing Thursday from the California giant came in response to Samsung's appeal seeking to overturn a $548 million award for patent infringement related to copying features from Apple's iPhones. ... read more

ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

Phase of the moon affects amount of rainfall

Russia postpones manned Lunar mission to 2035

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Sandy Selfie Sent from NASA Mars Rover

Getting real - on Mars

The Orion Crew Module Pressure Vessel Ready For Testing

Astronaut rescue exercise proves Det. 3 command, control ready to support DoD, NASA

Innovations in the Air

Challenger disaster at 30: Did the tragedy change NASA for the better?

Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

Russians spacewalk to retrieve biological samples

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

Russian Cosmonauts to Attach Thermal Insulation to ISS

Space Launch System's first flight will launch small Sci-Tech cubesats

Initial launcher assembly clears Ariane 5 for its payload integration process

ILS Proton Successfully Launches Eutelsat 9B for Eutelsat

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

Metal oxide sandwiches: New option to manipulate properties of interfaces

A fast solidification process makes material crackle

Researchers discover new phase of boron nitride and a new way to create pure c-BN

Breaking through insect shells at a molecular level

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.