Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TIME AND SPACE
The beam of invisibility
by Staff Writers
Vienna, Austria (SPX) Sep 15, 2017


A material with random irregularities scatters an incident light wave into all directions. Image courtesy TU Wien.

Researchers from Vienna University, together with colleagues from Greece and the USA, have now developed a new idea for a cloaking technology. A completely opaque material is irradiated from above with a specific wave pattern - with the effect that light waves from the left can now pass through the material without any obstruction.

This surprising result opens up completely new possibilities for active camouflage. The idea can be applied to different kinds of waves, it should work with sound waves just as well as with light waves. Experiments are already in the planning.

"Complex materials such as a sugar cube are opaque, because light waves inside them are scattered multiple times", says Professor Stefan Rotter (TU Wien). "A light wave can enter and exit the object, but will never pass through the medium on a straight line. Instead, it is scattered into all possible directions."

For years many different attempts have been made to outwit this kind of scattering, creating a "cloak of invisibility". Special materials have been worked out, for example, which are able to guide light waves around an object.

Alternatively, also experiments have been performed with objects that can emit light by themselves. When an electronic display sends out exactly the same light as it absorbs in the back, it can appear invisible, at least when looked at in the right angle.

At TU Wien a more fundamental approach has now been chosen.

"We did not want to reroute the light waves, nor did we want to restore them with additional displays. Our goal was to guide the original light wave through the object, as if the object was not there at all", says Andre Brandstotter, one of the authors of the study. "This sounds strange, but with certain materials and using our special wave technology, it is indeed possible."

The Laser Material
The team at TU Wien has spent years working on optically active materials, which are used for building lasers. To make the laser shine, energy has to be supplied by means of a pump beam. Otherwise, the laser material behaves just like any other material - it absorbs part of the incident light.

"The crucial point is to pump energy into the material in a spatially tailored way such that light is amplified in exactly the right places, while allowing for absorption at other parts of the material", says Professor Konstantinos Makris from the University of Crete (previously TU Wien).

"To achieve this, a beam with exactly the right pattern has to be projected onto the material from above - like from a standard video projector, except with much higher resolution."

If this pattern perfectly corresponds to the inner irregularities of the material which usually scatter the light, then the projection from above can effectively switch off the scattering, and another beam of light travelling through the material from one side can pass without any obstruction, scattering or loss.

"Mathematically, it is not immediately obvious that it is at all possible to find such a pattern", says Rotter.

"Every object we want to make transparent has to be irradiated with its own specific pattern - depending on the microscopic details of the scattering process inside. The method we developed now allows us to calculate the right pattern for any arbitrary scattering medium."

Light or Sound
Computer simulations have shown that the method works. Now the idea should be confirmed in experiments. Stefan Rotter is confident that this will be successful: "We are already discussing with experimentalists how this could be done. As a first step, we may test this technology with sound instead of light waves. Experimentally, they are easier to handle, and from a mathematical point of view, the difference does not matter significantly."

Research paper

TIME AND SPACE
Aussie quantum tech has its sights set on human biochemistry
Sydney, Australia (SPX) Sep 07, 2017
Australian scientists have developed a new tool for imaging life at the nanoscale that will provide new insights into the role of transition metal ions such as copper in neuro-degenerative diseases. In a new paper published in Nature Communications, a team of researchers at the University of Melbourne reveal a "quantum kangaroo" that demonstrates a way to detect and image electronic spins ... read more

Related Links
Vienna University of Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Diet tracker in space

Three astronauts blast off for five-month ISS mission

Crewed Missions Beyond LEO

Voyager Spacecraft: 40 Years of Solar System Discoveries

TIME AND SPACE
Arianespace announces a new contract, bringing its order book to 53 launches across three rockets

EUMETSAT signs with Arianespace for first Metop-SG satellite launch

MHI to launch first Inmarsat-6 satellite

Proton-M Rocket Launches Spanish Satellite Amazonas-5 Into Orbit

TIME AND SPACE
45 Kilometers on the Odometry for Opportunity

New tools for exploring the surface of Mars

NASA's Curiosity Mars Rover Climbing Toward Ridge Top

New Gravity Map Suggests Mars Has a Porous Crust

TIME AND SPACE
Spacecraft passes docking test

China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

Russia, China May Sign 5-Year Agreement on Joint Space Exploration

TIME AND SPACE
India, Japan Set to Boost Space Cooperation

Bids for government funding prove strong interest in LaunchUK

Blue Sky Network Reaffirms Commitment to Brazilian Market

India to Launch Exclusive Satellite for Afghanistan

TIME AND SPACE
Dormant, Yet Always-Alert Sensor Awakes Only in the Presence of a Signal of Interest

Air Force activates new satellites for tracking space objects

'Peel-and-go' printable structures fold themselves

Ultrathin spacecraft will collect, deposit orbital debris

TIME AND SPACE
Hubble observes pitch black planet

The return of the comet-like exoplanet

Does the Organic Material of Comets Predate our Solar System?

X-rays Reveal Temperament of Possible Planet-hosting Stars

TIME AND SPACE
Hibernation Over, New Horizons Continues Kuiper Belt Cruise

Pluto features given first official names

Jupiter's Auroras Present a Powerful Mystery

New Horizons Files Flight Plan for 2019 Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement