Subscribe free to our newsletters via your
. 24/7 Space News .




AEROSPACE
Taking aircraft manufacturing out of the oven
by Staff Writers
Boston MA (SPX) Apr 15, 2015


A new film of carbon nanotubes cures composites for airplane wings and fuselages, using only 1 percent of the energy required by traditional, oven-based manufacturing processes. Image courtesy Jose-Luis Olivares/MIT.

Composite materials used in aircraft wings and fuselages are typically manufactured in large, industrial-sized ovens: Multiple polymer layers are blasted with temperatures up to 750 degrees Fahrenheit, and solidified to form a solid, resilient material. Using this approach, considerable energy is required first to heat the oven, then the gas around it, and finally the actual composite.

Aerospace engineers at MIT have now developed a carbon nanotube (CNT) film that can heat and solidify a composite without the need for massive ovens. When connected to an electrical power source, and wrapped over a multilayer polymer composite, the heated film stimulates the polymer to solidify.

The group tested the film on a common carbon-fiber material used in aircraft components, and found that the film created a composite as strong as that manufactured in conventional ovens - while using only 1 percent of the energy.

The new "out-of-oven" approach may offer a more direct, energy-saving method for manufacturing virtually any industrial composite, says Brian L. Wardle, an associate professor of aeronautics and astronautics at MIT.

"Typically, if you're going to cook a fuselage for an Airbus A350 or Boeing 787, you've got about a four-story oven that's tens of millions of dollars in infrastructure that you don't need," Wardle says. "Our technique puts the heat where it is needed, in direct contact with the part being assembled. Think of it as a self-heating pizza. ... Instead of an oven, you just plug the pizza into the wall and it cooks itself."

Wardle says the carbon nanotube film is also incredibly lightweight: After it has fused the underlying polymer layers, the film itself - a fraction of a human hair's diameter - meshes with the composite, adding negligible weight.

The team, including MIT graduate students Jeonyoon Lee and Itai Stein and Seth Kessler of the Metis Design Corporation, has published its results in the journal ACS Applied Materials and Interfaces.

Carbon nanotube deicers
Wardle and his colleagues have experimented with CNT films in recent years, mainly for deicing airplane wings. The team recognized that in addition to their negligible weight, carbon nanotubes heat efficiently when exposed to an electric current.

The group first developed a technique to create a film of aligned carbon nanotubes composed of tiny tubes of crystalline carbon, standing upright like trees in a forest. The researchers used a rod to roll the "forest" flat, creating a dense film of aligned carbon nanotubes.

In experiments, Wardle and his team integrated the film into airplane wings via conventional, oven-based curing methods, showing that when voltage was applied, the film generated heat, preventing ice from forming.

The deicing tests inspired a question: If the CNT film could generate heat, why not use it to make the composite itself?

How hot can you go?
In initial experiments, the researchers investigated the film's potential to fuse two types of aerospace-grade composite typically used in aircraft wings and fuselages. Normally the material, composed of about 16 layers, is solidified, or cross-linked, in a high-temperature industrial oven.

The researchers manufactured a CNT film about the size of a Post-It note, and placed the film over a square of Cycom 5320-1. They connected electrodes to the film, then applied a current to heat both the film and the underlying polymer in the Cycom composite layers.

The team measured the energy required to solidify, or cross-link, the polymer and carbon fiber layers, finding that the CNT film used one-hundredth the electricity required for traditional oven-based methods to cure the composite. Both methods generated composites with similar properties, such as cross-linking density.

Wardle says the results pushed the group to test the CNT film further: As different composites require different temperatures in order to fuse, the researchers looked to see whether the CNT film could, quite literally, take the heat.

"At some point, heaters fry out," Wardle says. "They oxidize, or have different ways in which they fail. What we wanted to see was how hot could this material go."

To do this, the group tested the film's ability to generate higher and higher temperatures, and found it topped out at over 1,000 F. In comparison, some of the highest-temperature aerospace polymers require temperatures up to 750 F in order to solidify.

"We can process at those temperatures, which means there's no composite we can't process," Wardle says. "This really opens up all polymeric materials to this technology."

The team is working with industrial partners to find ways to scale up the technology to manufacture composites large enough to make airplane fuselages and wings.

"There needs to be some thought given to electroding, and how you're going to actually make the electrical contact efficiently over very large areas," Wardle says. "You'd need much less power than you are currently putting into your oven. I don't think it's a challenge, but it has to be done."

This research was funded in part by Airbus Group, Boeing, Embraer, Lockheed Martin, Saab AB, TohoTenax, ANSYS Inc., the Air Force Research Laboratory at Wright-Patterson Air Force Base, and the U.S. Army Research Office.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Aerospace News at SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





AEROSPACE
USAF retires last MC-130P aircraft in Pacific
Kadena Air Base, Japan (UPI) Apr 26, 2015
The last two U.S. Air Force MC-130P special mission aircraft in the Pacific have been transferred to Davis-Monthan Air Force Base, Ariz., and retired. The Combat Shadow aircraft used by the 17th Special Operations Command at Kadena Air Base in Japan are being replaced by MC-130J Commando II planes outfitted with the latest technology. "I have spent less time in the MC-130P than m ... read more


AEROSPACE
Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

Japan planning moon mission: space agency

AEROSPACE
UAE opens space center to oversee mission to Mars

Robotic Arm Gets Busy on Rock Outcrop

Mars might have liquid water

NASA's Curiosity Rover Making Tracks and Observations

AEROSPACE
India Role Model in Space Science Benefiting Common Man

Space law is no longer beyond this world

Ramping Up For Johnson's Chamber A Test

Space icon reflects on origins of space program

AEROSPACE
Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

AEROSPACE
Liquid crystal bubbles experiment arrives at International Space Station

Sixth SpaceX Delivery of Station Research With a Side of Caffeine

Research for One-Year Space Station Mission Launched On Falcon 9

Astronaut Hadfield to release first space album

AEROSPACE
Ariane 5 reaches the launch zone for next heavy-lift mission

Sentinel-2A arrives for Ariane Vega mission

Arianespace Flight VA222: THOR 7 and SICRAL 2 - launch delayed

SpaceX Dragon cargo ship arrives at space station

AEROSPACE
First exoplanet visible light spectrum

White Dwarf May Have Shredded Passing Planet

Spitzer, OGLE spot planet deep within our galaxy

Spitzer Spots Planet Deep Within Our Galaxy

AEROSPACE
Perseverance paves way for wind laser

Graphene brings 3-D holograms clearer and closer

Team develops faster, higher quality 3-D camera

3-D printing is so last year! We're onto 4-D printing now




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.