. 24/7 Space News .
EARLY EARTH
Symbiotic relationship crucial to reef survival dates to the Triassic
by Staff Writers
Princeton NJ (SPX) Nov 07, 2016


This polished fossil slab used in the study dates to more than 210 million years ago and contains well-preserved symbiotic corals. The fossils were collected in a mountainous region in Antalya, Turkey, and originated in the Tethys Sea, a shallow sunlit body of water that existed when the Earth's continents were one solid land mass called Pangea. Image courtesy of Jaroslaw Stolarski, Polish Academy of Sciences

The mutually beneficial relationship between algae and modern corals - which provides algae with shelter, gives coral reefs their colors and supplies both organisms with nutrients - began more than 210 million years ago, according to a new study by an international team of scientists including researchers from Princeton University.

That this symbiotic relationship arose during a time of massive worldwide coral-reef expansion suggests that the interconnection of algae and coral is crucial for the health of coral reefs, which provide habitat for roughly one-fourth of all marine life. Reefs are threatened by a trend in ocean warming that has caused corals to expel algae and turn white, a process called coral bleaching.

Published in the journal Science Advances, the study found strong evidence of this coral-algae relationship in fossilized coral skeletons dating back more than 210 million years to the late Triassic period, a time when the first dinosaurs appeared and Earth's continents were a single land mass known as Pangea. Although symbiosis is recognized to be important for the success of today's reefs, it was less clear that that was the case with ancient corals.

"It is important to know how far back in time symbiosis evolved because it gives insight into how important symbiosis is to the health of coral reefs," said Daniel Sigman, Princeton's Dusenbury Professor of Geological and Geophysical Sciences and a member of the Princeton Environmental Institute. "It appears that the origin of symbiosis corresponds to the rise of coral reefs in general."

In addition to confirming that symbiosis dates back to the Triassic, the study found that the corals inhabited nutrient-poor marine environments - not unlike today's subtropical waters - where algae-coral symbiosis played a major role in driving reef development.

"The onset of symbiosis with algae was highly profitable for corals," said lead author Jaroslaw Stolarski, a professor of biogeology at the Institute of Paleobiology at the Polish Academy of Sciences. "It allowed them to survive in very nutrient-poor waters, and at the same time grow and expand."

Algae belonging to the group known as dinoflagellates live inside the corals' tissues. The algae use photosynthesis to produce nutrients, many of which they pass to the corals' cells. The corals in turn emit waste products in the form of ammonium, which the algae consume as a nutrient.

This relationship keeps the nutrients recycling within the coral rather than drifting away in ocean currents and can greatly increase the coral's food supply. Symbiosis also helps build reefs - corals that host algae can deposit calcium carbonate, the hard skeleton that forms the reefs, up to 10 times faster than non-symbiotic corals.

Finding out when symbiosis began has been difficult because dinoflagellates have no hard or bony parts that fossilize. Instead, the researchers looked for three types of signatures in the coral fossils that indicate the past presence of algae: fossil microstructures, levels of different types of carbon and oxygen, and levels of two forms of nitrogen.

First author Katarzyna Frankowiak of the Institute of Paleobiology at the Polish Academy of Sciences conducted the microstructural analysis with assistance from Marcelo Kitahara of the Federal University of Sao Paulo in Brazil, Maciej Mazur of the University of Warsaw, and Anders Meibom of the Ecole Polytechnique Federale de Lausanne and the Universite de Lausanne. Their analysis revealed regularly spaced patterns of growth consistent with the symbiotic corals' reliance on algal photosynthesis, which only takes place during daylight.

Frankowiak and Anne Gothmann, who earned her Ph.D. from Princeton's Department of Geosciences in 2015 and is now a postdoctoral researcher at the University of Washington, measured the ratios of different types of oxygen and carbon and found that the results matched what would be expected when symbiosis occurs.

The third approach, determining the forms of nitrogen - which derive in part from the ammonium the corals had excreted - was conducted by Xingchen (Tony) Wang, who earned his doctoral degree in geosciences from Princeton in 2016 and is now a postdoctoral research fellow working with Sigman.

The nitrogen atoms, which are trapped in the fossil's calcium-carbonate matrix, come in two forms, or isotopes, that vary only by how many neutrons they have: 14N has seven neutrons while 15N has eight neutrons, making it slightly heavier. By studying modern corals, researchers knew that symbiotic corals contain a lower ratio of 15N to 14N compared to non-symbiotic corals. The team found that the fossilized corals also had a low 15N-to-14N ratio, indicating they were symbiotic.

"Although algae were not present in the fossils, they left behind chemical signatures," Wang said. "We found strong evidence that the fossilized coral were symbiotic and that they lived in a nutrient-poor environment. We were able to link the environmental conditions from 200 million years ago to the evolution of corals."

George Stanley, a professor of geosciences at the University of Montana, had earlier explored the question of when symbiosis first evolved in corals. "This confirms a hypothesis that my colleagues and I put forth 20 years ago," said Stanley, who is familiar with the research but had no role in it. "It is really exciting to see this confirmation."

The fossils used in the study were collected in a mountainous region in Antalya, Turkey. During their lifetime, they lived in a shallow sunlit body of water called the Tethys Sea.

Stanley said the work would not have been possible without the coral fossils, which were remarkably well-preserved. "These corals are such a wonderful resource because they are as if you picked them up off the beach yesterday, and this is because they were sealed in deposits for centuries."

The fossil record also shows a significant reef expansion occurred around 205 million years ago, and this fits with a boost in coral growth due to the development of symbiosis, Stanley said.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton University
Explore The Early Earth at TerraDaily.com






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Did Early Earth Spin On Its Side
Mountain View CA (SPX) Nov 02, 2016
New theoretical modeling of the ancient history of the Earth and the Moon suggests that the giant collision that spawned our natural satellite may have left Earth spinning very fast, and with its spin axis highly tilted. Computer simulations of what followed the collision, sometimes referred to as the "big whack," show that, following this event, and as the young Moon's orbit was getting b ... read more


EARLY EARTH
BRICS Space Agencies Sign Memorandum on Cooperation in Space Exploration

Clearing the Air in Space

Home is Where the Astronaut Is

Next stop Baikonur for ESA astronaut Thomas Pesquet

EARLY EARTH
Aerojet Rocketdyne completes CST launch abort engine hot fire tests

NASA Uses Tunnel Approach to Study How Heat Affects SLS Rocket

SpaceX Aims to Resume Falcon 9 Flights in 2016, Blames Helium Tank for Explosion

Raytheon gets $174 million Hypersonic Air-Breathing Weapon contract

EARLY EARTH
Unusual Martian region leaves clues to planet's past

A record of ancient tectonic stress on Mars

Curiosity Mars Rover Checks Odd-looking Iron Meteorite

New instrument could search for signatures of life on Mars

EARLY EARTH
Nations ask to play part in space lab

China launches first heavy-lift rocket

China to launch Long March-5 carrier rocket in November

US, China hold second meeting on advancing space cooperation

EARLY EARTH
ISRO's World record bid: Launching 83 satellites on single rocket

Shared vision and goals for the future of Europe in space

SSL delivers Sky Perfect JSAT satellite to Kourou

Dream coming true for ISS-bound rookie French astronaut

EARLY EARTH
Establishing an advanced bonding technique for tungsten and copper alloys

Engineers develop new magnetic ink to print self-healing devices that heal in record time

Why buoyant spheres don't always leap out of the water

Cal State LA partners with NASA to study how materials solidify in space

EARLY EARTH
What happens to a pathogenic fungus grown in space?

How Planets Like Jupiter Form

Giant Rings Around Exoplanet Turn in the Wrong Direction

Preferentially Earth-sized Planets with Lots of Water

EARLY EARTH
Mystery solved behind birth of Saturn's rings

Last Bits of 2015 Pluto Flyby Data Received on Earth

Uranus may have two undiscovered moons

Possible Clouds on Pluto, Next Target is Reddish









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.