Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TECH SPACE
Switching oxygen on and off
by Staff Writers
Vienna, Austria (SPX) Mar 15, 2017


This is an atomic force microscope at TU Wien (Vienna). Image courtesy TU Wien.

Oxygen atoms are highly reactive, yet the world does not spontaneously burn, even though everything is surrounded by this aggressive element. Why? The reason is that normal O2 molecules, are not particularly reactive.

At the Vienna University of Technology, it has now been possible to selectively switch individual oxygen molecules sitting on a titanium oxide surface between a non-reactive to a reactive state using a special force microscope. This process was viewed for the first time in high-resolution images.

"There are several ways to switch a stable, non-reactive O2 molecule into a reactive state," explains Martin Setvin, a member of the research group of Prof. Ulrike Diebold at the Institute for Applied Physics at the Vienna University of Technology.

"You can increase the temperature - that happens when you burn things. Alternatively, you can add an additional electron to the molecules, this also makes them chemically active."

This process of activating oxygen molecules by adding electrons is ubiquitous - all living organisms use this trick, and modern fuel cells also work in this way. At the TU Wien, Setvin and coworkers are now able to activate individual O2 molecules at will using a force microscope, and learn how the process occurs at the atomic scale.

In the experiments, oxygen molecules were studied on the surface of a titanium oxide crystal at extremely low temperatures. Titanium oxide is a particularly interesting material used in many areas - from the coating for artificial hip joints to self-cleaning, dirt-repellent mirrors. It is also a photocatalyst, which means that it can induce chemical reactions when irradiated with light.

Seeing and Feeling Atoms
Key to the success of the oxygen experiments was a state-of-the-art atomic-force microscope, purchased by Prof. Diebold using proceeds of her 2014 Wittgensteinpreis Award.

"A tiny needle is vibrated and moved across the surface. When the atoms at the very end of the tip come close to the surface, the tip feels a force and the oscillation changes. From this tiny change, one can create an image showing where the atoms are, "says Diebold."

Essentially, the reactive oxygen molecules that have an extra electron exert a stronger force on the tip than the unreactive ones, and thus we can distinguish them."

Interestingly, it is also possible to inject an additional electron to an individual oxygen molecule with the same tip, and then observe the transition from the inactive to the active state.

The same process also happens when the surface of the titanium oxide is irradiated with light - electrons are liberated inside the material, and can come to the surface to activate one of the oxygen molecules.

"Whether we add an electron using the microscope or by irradiating the titanium oxide - the end result is the same," says Ulrike Diebold. "Our method gives us a whole new level of control over this process, and opens up new possibilities for investigating the inner workings of photocatalysts."

Research paper

TECH SPACE
Solid metal has 'structural memory' of its liquid state
Washington DC (SPX) Mar 15, 2017
New work from a team including Carnegie's Guoyin Shen and Yoshio Kono used high pressure and temperature to reveal a kind of "structural memory" in samples of the metal bismuth, a discovery with great electrical engineering potential. Bismuth is a historically interesting element for scientists, as a number of important discoveries in the metal physics world were made while studying it, in ... read more

Related Links
Vienna University of Technology
Space Technology News - Applications and Research

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Fly me to the Moon: Russia seeks new cosmonauts

The Second Moon Race

ECLSS Put to the Test for Commercial Crew Missions

Visions of the Future: Planetary Exploration Through 2050

TECH SPACE
Kennedy's Multi-User Spaceport Streamlines Commercial Launches

Designing new rocket engines that don't blow up

Space squadron supports record-breaking satellites launch

Europe launches fourth Earth monitoring satellite

TECH SPACE
Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

NASA Mars Orbiter Tracks Back-to-Back Regional Storms

Paleolake deposits on Mars might look like sediments in Indonesia

TECH SPACE
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

TECH SPACE
A Consolidated Intelsat and OneWeb

UK funding space entrepreneurs

Kymeta and Intelsat announce new service to revolutionize how satellite services are purchased

ISRO Makes More Space for Private Sector Participation in Satellite Making

TECH SPACE
Using lasers to create ultra-short pulses

Next-gen steel under the microscope

Aluminium giant Rusal doubles profits

Switching oxygen on and off

TECH SPACE
Mutants in Microgravity

Could fast radio bursts be powering alien probes

Enzyme-free krebs cycle may have been key step in origin of life on Earth

Light From An Ultra-Cool Neighbor

TECH SPACE
NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution

Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement