. 24/7 Space News .
Swarms Of Nano-Nauts

This image shows one example of dust particle components that have a size of 63 mm cubed. Credit: UC Berkeley/Peter Menzel Photography
by Staff Writers
Glasgow, UK (SPX) Apr 19, 2007
Engineers at the University of Glasgow are designing a new breed of planetary explorers: tiny, shape-shifting devices that can be carried on the wind like dust particles but are also smart enough to communicate, fly in formation and take scientific measurements.

Smart dust particles consist of a computer chip, about a millimeter in dimension, surrounded by a polymer sheath that can be made to wrinkle or smooth out by applying a small voltage. Roughening the surface of the polymer means the drag on the smart dust particle increases and it floats higher in the air; conversely, smoothing out the surface causes the particle to sink. Simulations show that by switching between rough and smooth modes, the smart dust particles can gradually hop towards a target, even in swirling winds.

Dr John Barker, who described possible applications of smart dust at the RAS National Astronomy Meeting in Preston on 18th April said, "The concept of using smart dust swarms for planetary exploration has been talked about for some time, but this is the first time anyone has looked at how it could actually be achieved. Computer chips of the size and sophistication needed to make a smart dust particle now exist and we are looking through the range of polymers available to find one that matches our requirements for high deformation using minimal voltages."

Smart dust particles would use wireless networking to communicate with each other and form swarms. Dr Barker explains, "We envisage that most of the particles can only talk to their nearest neighbors but a few can communicate at much longer distances. In our simulations we've shown that a swarm of 50 smart dust particles can organize themselves into a star formation, even in turbulent wind. The ability to fly in formation means that the smart dust could form a phased array. It would then be possible to process information between the distributed computer chips and collectively beam a signal back to an orbiting spacecraft."

In order for the smart dust to be useful in planetary exploration, they would need to carry sensors. With current technology, chemical sensors tend to be rather large for the sand-grain sized particles that could be carried by the thin Martian atmosphere. However, the atmosphere of Venus is much denser and could carry smart sensors up to a few centimeters in size. Dr Barker said, "Scientific studies could theoretically be carried out on Venus using the technology we have now. However, miniaturization is coming on rapidly. By 2020, we should have chips that have components which are just a few nanometers across, which means our smart particles would behave more like macro-molecules diffusing through an atmosphere rather than dust grains."

The group at Glasgow thinks it will be some years before smart dust is ready to be launched into space. Dr Barker said, "We are still at an early stage, working on simulations and components. We have a lot of obstacles to overcome before we are even ready to physically test our designs. However, the potential applications of smart dust for space exploration are very exciting. Our first close-up studies of extra-solar planets could come from a smart dust swarm delivered to another solar system by ion-drive." It may be a long way off, but one day smart dust could provide a unique method of collecting data on some of the most important and exciting locations for astrobiology research.

Smart dust was developed by Kris Pister, Joe Kahn, Bernhard Boser at the University of Berkley, California, between 1998 and 2001 with the aim of demonstrating a complete sensor/communication system that could be integrated into a cubic millimeter package. Glasgow University is a member of a large consortium dealing with a practical variant called Smart Specks.

Email This Article

Related Links
A Resilient Robot
Talking Robots
Superbots in Action
All about the robots on Earth and beyond!



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Boeing Orbital Express Conducts Autonomous Spacecraft-to-Spacecraft Fluid and Component Transfer
St Louis MO (SPX) Apr 18, 2007
In its first on-orbit demonstration 300 miles above the Earth, Boeing's Orbital Express system autonomously transferred propellant fuel and a battery from one spacecraft to another, marking industry firsts for the revolutionary system.







  • Building Shields For Your Starship
  • Earth Magnetic Field A Hazard For Lunar Astronauts
  • Facing Tanning Booth Cancer Risk
  • Merlin Secures NASA SEWP IV Contract With Potential Value Of Over USD 5 Billion

  • Dust Devils Whip By Spirit
  • Investigating The Dark Streak Of Victoria Crater
  • A Close Up Look At Martian Rocks From The Comfort Of Your Couch
  • Through A Telescope Darkly

  • Russia Puts 16 Foreign Satellites Into Orbit
  • Indian Space Agency Set For First Commercial Launch Of Foreign Satellite
  • Russia To Launch Four US Satellites In May
  • PSLV-C8 To Be Launched On April 23

  • Scientists Meet To Review Envisat Results After Five Years Of Operations
  • US Uses Landsat Satellite Data To Fight Hunger And Poverty
  • NOAA And NASA Restore Climate Sensor To Upcoming NPP Satellite
  • High-Resolution Images Herald New Era In Earth Sciences

  • Rosetta And New Horizons Watch Jupiter In Joint Campaign
  • New Horizons Shows Off Its Color Camera In Io Image
  • Alice Views Jupiter And Io
  • A Look From LEISA

  • UK Scientists Sift Superfine Stardust
  • Dark Matter Charted Out To Five Billion Light Years
  • A New Class Of Interstellar Lighthouse
  • Astronomers Map Out Planetary Danger Zone

  • Rochester Triumphs In NASA Great Moonbuggy Race
  • Shanghai Vies To Win Battle Of Moon Rovers
  • A Piggyback Solution For Science Versus Exploration
  • Assembling Of Moon Mission Spacecraft Begins

  • Boeing-Led Team Developing Surface Navigation Concept For DARPA
  • China Launches Compass Navigation Satellite
  • Northrop Grumman Team OCX Bids On The GPS Next Generation Control Segment Contract
  • GPS Significantly Impacted By Powerful Solar Radio Burst

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement