. 24/7 Space News .
ROBO SPACE
Swarm of underwater robots mimics ocean life
by Staff Writers
San Diego CA (SPX) Jan 25, 2017


This is a graphic representation of the M-AUEs underwater. Image courtesy Scripps Oceanography/Jaffe Lab for Underwater Imaging.

Underwater robots developed by researchers at Scripps Institution of Oceanography at the University of California San Diego offer scientists an extraordinary new tool to study ocean currents and the tiny creatures they transport. Swarms of these underwater robots helped answer some basic questions about the most abundant life forms in the ocean - plankton.

Scripps research oceanographer Jules Jaffe designed and built the miniature autonomous underwater explorers, or M-AUEs, to study small-scale environmental processes taking place in the ocean. The ocean-probing instruments are equipped with temperature and other sensors to measure the surrounding ocean conditions while the robots "swim" up and down to maintain a constant depth by adjusting their buoyancy. The M-AUEs could potentially be deployed in swarms of hundreds to thousands to capture a three-dimensional view of the interactions between ocean currents and marine life.

In a new study published in the Jan. 24 issue of the journal Nature Communications, Jaffe and Scripps biological oceanographer Peter Franks deployed a swarm of 16 grapefruit-sized underwater robots programmed to mimic the underwater swimming behavior of plankton, the microscopic organisms that drift with the ocean currents. The research study was designed to test theories about how plankton form dense patches under the ocean surface, which often later reveal themselves at the surface as red tides.

"These patches might work like planktonic singles bars," said Franks, who has long suspected that the dense aggregations could aid feeding, reproduction, and protection from predators.

Two decades ago Franks published a mathematical theory predicting that swimming plankton would form dense patches when pushed around by internal waves - giant, slow-moving waves below the ocean surface. Testing his theory would require tracking the movements of individual plankton - each smaller than a grain of rice - as they swam in the ocean, which is not possible using available technology.

Jaffe instead invented "robotic plankton" that drift with the ocean currents, but are programmed to move up and down by adjusting their buoyancy, imitating the movements of plankton. A swarm of these robotic plankton was the ideal tool to finally put Franks' mathematical theory to the test.

"The big engineering breakthroughs were to make the M-AUEs small, inexpensive, and able to be tracked continuously underwater," said Jaffe. The low cost allowed Jaffe and his team to build a small army of the robots that could be deployed in a swarm.

Tracking the individual M-AUEs was a challenge, as GPS does not work underwater. A key component of the project was the development by researchers at UC San Diego's Qualcomm Institute and Department of Computer Science and Engineering of mathematical techniques to use acoustic signals to track the M-AUE vehicles while they were submerged.

During a five-hour experiment, the Scripps researchers along with UC San Diego colleagues deployed a 300-meter (984-foot) diameter swarm of 16 M-AUEs programmed to stay 10-meters (33-feet) deep in the ocean off the coast of Torrey Pines, near La Jolla, Calif. The M-AUEs constantly adjusted their buoyancy to move vertically against the currents created by the internal waves. The three-dimensional location information collected every 12 seconds revealed where this robotic swarm moved below the ocean surface.

The results of the study were nearly identical to what Franks predicted. The surrounding ocean temperatures fluctuated as the internal waves passed through the M-AUE swarm. And, as predicted by Franks, the M-AUE location data showed that the swarm formed a tightly packed patch in the warm waters of the internal wave troughs, but dispersed over the wave crests.

"This is the first time such a mechanism has been tested underwater," said Franks. The experiment helped the researchers confirm that free-floating plankton can use the physical dynamics of the ocean - in this case internal waves - to increase their concentrations to congregate into swarms to fulfill their fundamental life needs.

"This swarm-sensing approach opens up a whole new realm of ocean exploration," said Jaffe. Augmenting the M-AUEs with cameras would allow the photographic mapping of coral habitats, or "plankton selfies," according to Jaffe.

The research team has hopes to build hundreds more of the miniature robots to study the movement of larvae between marine protected areas, monitor harmful red tide blooms, and to help track oil spills. The onboard hydrophones that help track the M-AUEs underwater could also allow the swarm to act like a giant "ear" in the ocean, listening to and localizing ambient sounds in the ocean.

Jaffe, Franks, and their colleagues were awarded nearly $1 million from the National Science Foundation in 2009 to develop and test the new breed of ocean-probing instruments. The study's coauthors include: Paul Roberts, principal development engineer at Scripps, Ryan Kastner, professor in the Department of Computer Science and Engineering; Diba Mirza, postdoctoral researcher in computer science; and Curt Schurgers, principal development engineer at the Qualcomm Institute, and Scripps student intern Adrien Boch.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - San Diego
All about the robots on Earth and beyond!






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
NASA develops AI for future exploration of extraterrestrial subsurface oceans
Los Angeles CA (SPX) Jan 25, 2017
NASA is developing technology which could enable autonomous navigation of future underwater drones studying subsurface oceans on icy moons like Jupiter's Europa. The agency is working on artificial intelligence (AI) that would allow submersibles to make their own decisions during exploration of extraterrestrial water worlds. Space exploration missions and astronomical observations in recen ... read more


ROBO SPACE
Scientists and students tackle omics at NASA workshop

Mister Trump Goes to Washington

Airbus delivers propulsion test module for the Orion programme to NASA

NASA to rely on Soyuz for ISS missions until 2019

ROBO SPACE
Airbus Safran Launchers in 2016: we keep our promises

ULA and team launches US military spy satellite

India Defers Much-Awaited Heaviest Rocket Launch

When One launch is not enough: SpaceX Return To Flight

ROBO SPACE
Long Eclipse Avoidance Manoeuvres Performed Successfully on MOM Spacecraft

Commercial Crew's Role in Path to Mars

Similar-Looking Ridges on Mars Have Diverse Origins

Bursts of methane may have warmed early Mars

ROBO SPACE
China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

China Space Plan to Develop "Strength and Size"

Beijing's space program soars in 2016

ROBO SPACE
ESA Planetary Science Archive gets a new look

Iridium-1 NEXT Launched on a Falcon 9

Shaping the Future: Aerospace Works to Ensure an Informed Space Policy

Russia-China Joint Space Studies Center May Be Created in Southeastern Russia

ROBO SPACE
NanoSpace receives commercial order to supply components to TURKSAT 6A

First European-built all-electric satellite EUTELSAT 172B getting ready to fly

NSC to deliver virtual training gear to British army

Metallic hydrogen, once theory, becomes reality

ROBO SPACE
First footage of a living stylodactylid shrimp filter-feeding at depth of 4826m

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

Looking for life in all the right places with the right tool

Could dark streaks in Venusian clouds be microbial life

ROBO SPACE
Experiment resolves mystery about wind flows on Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno

Pluto Global Color Map

Lowell Observatory to renovate Pluto discovery telescope









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.