. 24/7 Space News .
STELLAR CHEMISTRY
Success in Critical Communications Tests for NASA's James Webb Space Telescope
by Ann Jenkins for STSI News
Baltimore MD (SPX) Sep 07, 2018

The Mission Operations Center for the James Webb Space Telescope is located at the Space Telescope Science Institute in Baltimore, Md. In preparation for launch, the flight operations team recently conducted two critical and successful communications tests.

When NASA's James Webb Space Telescope launches in 2021, it will write a new chapter in cosmic history. This premier space science observatory will seek the first stars and galaxies, explore distant planets around other stars, and solve mysteries of own solar system. Webb will be controlled from the Mission Operations Center (MOC) at the Space Telescope Science Institute in Baltimore, Maryland.

To prepare for launch, the flight operations team recently conducted two successful communications tests. The first simulated the complex communications among numerous entities in the critical period of launch through the first six hours of flight. The second demonstrated that the MOC could successfully communicate with the telescope.

From the moment Webb launches, and through the first six hours of flight, five different telecommunications service providers located around the world will alternately convey command and telemetry data to the mission operations team in the MOC. The first exercise demonstrated the complex exchange among these facilities.

These different providers are needed because of the geometry of Earth in relation to Webb's orbit and altitude. "Whereas most low-Earth missions can use TDRS (Tracking and Data Relay Satellite) or some other kind of communications satellite in orbit around Earth to relay data, we are so far away that we have to use other facilities," explained NASA's Carl Starr, the Mission Operations Manager, or "MOM," for Webb at NASA's Goddard Space Flight Center, Greenbelt, Maryland.

By six hours after liftoff, Webb will be about halfway to the Moon and six times higher in altitude than the geosynchronous Earth orbit (GEO) where TDRS and many communications satellites dwell. When the telescope reaches its destination, it will be nearly a million miles from Earth-about 45 times farther away than GEO.

"It's a lot of going back and forth," said Starr. "You have to change configurations, you need a stable connection with Webb at each change, you have to establish the network connections, you have to process the data-and you have to do it multiple times with different stations and make it seamless."

"And to make things even more complicated," Starr continued, "everyone we are talking about is in different places. You have the Space Network out in New Mexico, the Deep Space Network in California, and the European Space Agency's Malindi station in Kenya and European Space Operations Centre in Germany. It becomes a very complicated test to do, because no one is in the same time zone-and all of that data comes in and out of this building."

This test was a major step in demonstrating the flight operations capabilities and processes to support launch-day communications. After the first day, the team moves to a normal setup with just the three Deep Space Network terminals around the world.

"The teams were able to talk with the external entities, and prove the concept that we can manipulate the communications on the day of launch here in the building for the mission," Starr said. "We'll have other proficiency exercises later, but this was the first time that we did it, and it was very successful."

Talking to the Telescope
No mission would be possible without communicating with the telescope. The flight operations team in Baltimore recently did that for the first time, talking to the actual Webb spacecraft on the ground while it's being integrated and tested across the country at the Northrop Grumman facility in Los Angeles, California.

"We treated Webb as if it were a million miles away," said Starr. To do this, the flight operations team connected the spacecraft to the Deep Space Network. However, since Webb isn't really in space yet, special equipment was used to emulate the real radio link that will exist between Webb and the Deep Space Network when Webb flies.

"We can command and control the vehicle now, and run tests with it from here, without having to travel to Northrop Grumman," Starr explained. "It really is making use of technology to stay on schedule."

It didn't really matter where Webb was during the test. "As far as we're concerned, it could be in the basement of this building, and we wouldn't know any different," Starr added. "You're just at your console, you've got a data line, your screen...it's all very much remote. I could imagine it must be how drone pilots feel. They're not anywhere near where their vehicle is."

During the exercise, the team executed non-operational commands and initiated a recorder playback. This important test demonstrated the flight operations team's ability to command Webb from the MOC in Baltimore.

Throughout most of commissioning, the MOC will be in constant communication with Webb. After commissioning, approximately 180 days after launch, the team will communicate for 8 hours a day with the telescope. During that time, operators will send up packages of commands for the telescope to run autonomously and downlink the science data.

More tests will follow, but these were the first to show the MOC's successful communication with Webb and with the many command and telemetry service providers. The fact that these exercises were carried out flawlessly is a testament to the hard work of the flight operations team, as well as teams across the country and around the world.


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New geodetic observatory coming to McDonald Observatory
Austin TX (SPX) Aug 24, 2018
A new scientific facility is under construction on the grounds of The University of Texas at Austin's McDonald Observatory that will help scientists better understand Earth and could help minimize the effects of geohazards such as earthquakes, volcanic eruptions, sea level changes and landslides. Called the McDonald Geodetic Observatory, it is funded by a $4.25 million contract between NASA's Goddard Spaceflight Center and UT Austin's Center for Space Research. Scheduled to begin science operation ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Going up! Japan to test mini 'space elevator'

Airbus-built ACLS Life Support Rack is ready for launch from Tanegashima

UAE announces first astronauts to go to space

Bahrain in talks with Russia to send astronauts into space

STELLAR CHEMISTRY
Alaska Aerospace To Host Open House And Town Hall Meeting In Kodiak

How an LWO and his team guided a Minotaur IV rocket out of the labyrinth

NASA, SpaceX Agree on Plans for Crew Launch Day Operations

India readies baby rockets to tap small satellites' market

STELLAR CHEMISTRY
Mars dust storm clears, raising hope for stalled NASA rover

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

Team Continues to Listen for Opportunity

Opportunity rover expected to call home as Martian dust storm clears

STELLAR CHEMISTRY
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

STELLAR CHEMISTRY
European Space Talks: sharing our passion for space

The world's lowest-cost global communications network

Successful capital raising sees Kleos Space Launch on the ASX

Artwork unveiled on exoplanet satellite

STELLAR CHEMISTRY
Access to 3D printing is changing the work in research labs

A new way to remove ice buildup without power or chemicals

Researchers use acoustic forces to print droplets that couldn't be printed before

All that is gold is not biochemically stable

STELLAR CHEMISTRY
A Direct-Imaging Mission to Study Earth-like Exoplanets

Rutgers scientists identify protein that may have existed when life began

Little star sheds light on young planets

Water worlds could support life, study says

STELLAR CHEMISTRY
Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter

Water discovered in the Great Red Spot indicates Jupiter might have plenty more









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.