Subscribe free to our newsletters via your
. 24/7 Space News .




IRON AND ICE
Subaru Telescope Observes Rapid Changes in a Comet's Plasma Tail
by Staff Writers
Tokyo, Japan (SPX) Mar 05, 2015


The global structure of Comet Lovejoy's (C/2013 R1) plasma tail. Full size gif animation

Images from a December 2013 observation of the comet C/2013 R1 (Lovejoy) (Note 1) reveal clear details about rapidly changing activity in that comet's plasma tail. To get this image, astronomers used Subaru Telescope's wide-field prime-focus Suprime-Cam to zero in on 0.8 million kilometers of the comet's plasma tail, which resulted in gaining precious knowledge regarding the extreme activity in that tail as the comet neared the Sun.

Team of researchers from National Astronomical Observatory of Japan, Stony Brook University (The State University of New York) and Tsuru University reported highly resolved find details of this comet captured in B-band in 2013 (Subaru Telescope's Image Captures the Intricacy of Comet Lovejoy's Tail).

They used I-band filter which includes H2O+ line emissions and the V-band filter which includes CO+ and H2O+ line emissions.

During the observations, the comet exhibited very rapid changes in its tail in the course of only 20 minutes (Figure 1). Such extreme short-term changes are the result of the comet's interactions with the solar wind, which consists of charged particles constantly sweeping out from the Sun. The reason for the rapidity of these changes is not well understood.

Dr. Jin Koda, the principal investigator of these nights, says "My research is on galaxies and cosmology, so I rarely observe comets. But Lovejoy was up in the sky after my targets were gone on our observing nights, and we started taking images for educational and outreach purposes.

The single image from the previous night revealed such delicate details along the tail it inspired us further to take a series of images on the following night. As we analyzed the images, we realized that the tail was displaying rapid motion in a matter of only a few minutes! It was just incredible!"

The plasma tail of a comet forms when gas molecules and atoms coming out from the comet encounter the solar wind. Changes and disturbances in the solar wind can affect the behavior and appearance of this plasma tail, causing it to form clumps of ionized material. The material in the plasma tail departs from the comet's coma and floats away on the solar wind. At these times, the plasma tail can take on a "kinked" or twisted look.

A good candidate for a detailed study of activity in the plasma tail must be a bright comet with an orbit that takes it close enough to the Sun to form such a tail. In addition, the best viewing angles for astronomers to capture views of plasma tail changes occur when the comet also approaches close to Earth.

As a result, comets that allow good viewing of the plasma tail are relatively rare - about one or two per year. During its passage, Comet Lovejoy's plasma tail was almost perpendicular (83.5 degrees) to the line of sight from Earth. That made it a prime candidate for close-up observations of its plasma tail structure using Suprime-Cam.

Another discovery is that clumps located in the plasma tail at about 300 thousand kilometers from the nucleus moved at a fairly slow speed - about 20 - 25 kilometers per second (Figure 2). That is much slower than reported in other comets, such as P/Halley, which gave off clumps that moved as fast as 58 kilometers per second or the value 44 +/- 11 kilometers per second (Note 2) as derived from several bright comets in the past.

The speed of the solar wind ranges from 300 to 700 kilometers per second and the wind intensity and velocity that the comet encounters depends on where it is located with respect to the Sun.

The solar wind helps to accelerate the clumps in the tail out away from the Sun. Eventually the clumps in the comet's tail reach this high speed. The observation team thinks they witnessed the beginning of the acceleration of the clumps by the solar wind.

It is still under study how these ion clumps form and what parameters determine the initial speed of them. Dr. Masafumi Yagi, the first author of the paper noted "Comets are often observable only during the twilight as they come near the Sun.

On the other hand, it becomes difficult to observe faint objects like galaxies during the twilight hours because of the brighter sky background. Well-designed telescope scheduling like this case makes an effective use of the Subaru Telescope's time and will enable us to collect more data of comets when the opportunity arises in the future."

The team's research paper titled "Initial Speed of Knots in the Plasma Tail of C/2013 R1 (Lovejoy) will be published in Astronomical Journal in its March 2015 issue.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Subaru Telescope
Asteroid and Comet Mission News, Science and Technology






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





IRON AND ICE
Dark Energy Camera catches breathtaking glimpse of comet Lovejoy
Batavia IL (SPX) Mar 02, 2015
On December 27, 2014, while scanning the southern sky as part of the Dark Energy Survey, researchers snapped the above shot of comet Lovejoy. The image above was captured using the 570-megapixel Dark Energy Camera, the world's most powerful digital camera. Each of the rectangular shapes above represents one of the 62 individual fields of the camera. At the time this image was t ... read more


IRON AND ICE
Core work: Iron vapor gives clues to formation of Earth and moon

Application of laser microprobe technology to Apollo samples refines lunar impact history

NASA releases video of the far side of the Moon

US Issuing Licenses for Mineral Mining on Moon

IRON AND ICE
Curiosity confirms methane in Mars' atmosphere

New Flight Software to Fix Memory Issues is Onboard Rover

NASA's Curiosity Mars Rover Drills at 'Telegraph Peak'

How Can We Protect Mars From Earth, While Searching For Life

IRON AND ICE
Old-economy sectors are now tech, too: US study

Diamantino Sforza - Gentleman Farmer of Prince George's County

Water pools in US astronaut's helmet after spacewalk

Korean tech start-ups offer life beyond Samsung

IRON AND ICE
China's moon rover Yutu functioning but stationary

Argentina welcomes first Chinese satellite tracking station outside China

More Astronauts for China

China launches the FY-2 08 meteorological satellite successfully

IRON AND ICE
US astronauts speed through spacewalk at orbiting lab

Watching Alloys Change from Liquid to Solid Could Lead to Better Metals

NASA Hopes to Continue Cooperation on ISS Until 2024

Russia to use International Space Station till 2024

IRON AND ICE
Arianespace certified to ISO 50001 at Guiana Space Center

SpaceX launches two communications satellites

Soyuz-2.1a Rocket Takes Military Satellite to Designated Orbit

Russia's Vostochny Cosmodrome Construction Reaches Home Stretch

IRON AND ICE
Planets Can Alter Each Other's Climates over Eons

The mystery of cosmic oceans and dunes

Laser 'ruler' holds promise for hunting exoplanets

Scientists predict earth-like planets around most stars

IRON AND ICE
US Military Satellite Explodes, Sending Chunks of Debris Into Orbit

UK Space Agency's second CubeSat mission is taking shape

Debris Fills Orbit as US Satellite Explodes

Smart crystallization




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.