Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Subaru Telescope Observers Superflare Stars with Large Starspots
by Staff Writers
Tokyo, Japan (SPX) May 15, 2015


Left: The brightness variation of solar-type superflare stars (from Kepler data). In addition to the sudden brightenings caused by flares, quasi-periodic brightness variations with periods of about 15 days are seen. Right: An artificial image of a superflare star seen with visible light. This figure shows a large superflare (shown in white) occurring in the large starspot area. Image courtesy Kyoto University. For a larger version of this image please go here.

A team of astronomers has used the High Dispersion Spectrograph on the Subaru Telescope to conduct spectroscopic observations of Sun-like "superflare" stars first observed and cataloged by the Kepler Space Telescope. The investigations focused on the detailed properties of these stars and confirmed that Sun-like stars with large starspots can experience superflares.

The team, made up of astronomers from Kyoto University, University of Hyogo, the National Astronomical Observatory of Japan (NAOJ), and Nagoya University, targeted a set of solar-type stars emitting very large flares that release total energies 10-10000 times greater than the biggest solar flares.

Solar flares are energetic explosions in the solar atmosphere and are thought to occur by intense releases of magnetic energy around the sunspots. Large flares often cause massive bursts of high-speed plasma called coronal mass ejections (CMEs), can lead to geomagnetic storms on Earth. Such storms can have severe impacts on our daily life by affecting such systems as communications and power grids.

This work follows up on observations made in 2012 (Maehara et al. Nature on 2012 May 24), where the team reported finding several hundred superflares on solar-type stars by analyzing stellar observation data from Kepler Space Telescope. This discovery was very important since it enabled the astronomers to conduct statistical analysis of superflares for the first time.

However, more detailed observations were needed to investigate detailed properties of superflare stars and whether such massive flares can occur on ordinary single stars similar to our Sun.

Based on the initial discovery, the team carried out spectroscopic observations on 50 solar-type superflare stars selected from the Kepler Space Telescope's data. From the investigation of the detailed properties of spectral lines, the team obtained the following results:

1.More than half the observed 50 stars show no evidence of binarity (that is, they are not binary stars). The team confirmed the characteristics of the target stars as similar to those of the Sun.

2.On the basis of the Kepler data, superflare stars show somewhat regular, periodic changes in their brightnesses. The typical periods range from one day to a few tens of days. Such variations are explained by the rotation of the star and its starspots. As shown in Figure 1, the stars seem to become dimmer when their starspots are on their visible sides.

Moreover, the timescales of the brightness variations should correspond to the stars' rotation speeds. Spectroscopic observations allow observers to estimate the rotation velocity from the broadening of absorption lines (Figure 2), and confirm that a velocity derived from spectroscopic data matches the brightness variation timescale as the star rotates. In addition, the measured rotation velocity of some target superflare stars is as slow as that of the Sun.

3.Based on solar observations, astronomers know that if there are large dark star spots on a stellar surface, the "core depth" (the depth and width of a spectral line) of the Ca II 854.2[nm] (ionized Calcium) absorption line becomes shallow. Using this, they investigated the core depth of Ca II 854.2 [nm] line, and found that superflare stars have large starspots compared to sunspots (Figure 3).

The results of these observations and analysis confirm that stars similar to the Sun can have superflares if they have large starspots. In the future, in addition to the continuing spectroscopic observations with Subaru Telescope, the team will conduct observations with the Kyoto University's Okayama 3.8m telescope, which is now under construction. This will allow them to investigate more detailed properties and changes in long-term activity of superflare stars.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Subaru Telescope
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Delta Cephei's hidden companion
Geneva, Switzerland (SPX) May 15, 2015
To measure distances in the Universe, astronomers use Cepheids, a family of variable stars whose luminosity varies with time. Their role as distance calibrators has brought them attention from researchers for more than a century. While it was thought that nearly everything was known about the prototype of Cepheids, named Delta Cephei, a team of researchers at the University of Geneva (UNIG ... read more


STELLAR CHEMISTRY
NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

STELLAR CHEMISTRY
Technique for finding signs of life on the Red Planet

Mystery Methane on Mars: The Saga Continues

Auroras on Mars

Quick Detour by NASA Mars Rover Checks Ancient Valley

STELLAR CHEMISTRY
Russia races to replace Sarah Brightman as space tourist

Photonic Laser Thruster Propels Simulated Spacecraft

Potentially Revolutionary Mission Heading for 2016 Launch

High-tech Analysis of Orion Heat Shield Underway

STELLAR CHEMISTRY
3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

STELLAR CHEMISTRY
ISS Partners Adjust Spacecraft Schedule

Samantha's longer stay on ISS

Italian astronaut shows how to use restroom on ISS online

Russia delays return of ISS crew members after supply ship failure

STELLAR CHEMISTRY
Report: SpaceX Falcon 9 rocket certified to fly NASA missions

DirecTV-15 and SKY Mexico-1 integrated for Ariane 5 heavy-lift mission

Russia to Launch US Comms Satellite Into Space

Fifth Vega takes shape for its flight with Sentinel-2A

STELLAR CHEMISTRY
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

STELLAR CHEMISTRY
Researchers develop artificial membranes with programmable surfaces

Tiny silicone spheres come out of the mist

OPALS Boosts Space-to-Ground Optical Communications Research

Patria Space unit now part of RUAG




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.