Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Study yields new knowledge about materials for ultrasound and other uses
by Staff Writers
Oak Ridge TN (SPX) Oct 05, 2016

ORNL's Michael Manley led a study to discover the key to the success of modern materials used in ultrasound machines and other piezoelectric devices. At the ARCS instrument of the Spallation Neutron Source, he and colleagues studied lattice dynamics in relaxor-based ferroelectrics. Image courtesy Oak Ridge National Laboratory, US Dept. of Energy; photographer Genevieve Martin. For a larger version of this image please go here.

The lighter wand for your gas BBQ, a submarine's sonar device and the ultrasound machine at your doctor's office all rely on piezoelectric materials, which turn mechanical stress into electrical energy, and vice versa. In 1997, researchers developed piezoelectric materials that were 10 times better at coupling electrical and mechanical responses than prior state-of-the-art materials. But even scientists did not understand why the newer materials were so responsive.

Now, scientists at the Department of Energy's Oak Ridge National Laboratory and their research partners have used neutron scattering to discover the key to piezoelectric excellence in the newer materials, which are called relaxor-based ferroelectrics. (A ferroelectric material has electrical polarization that is reversed by application of an electric field.) Their findings, published online in the journal Science Advances, may provide knowledge needed to accelerate the design of functional materials for diverse applications.

Relaxor-based oxide ferroelectrics have revolutionized piezoelectric devices. In medical ultrasound, for example, the mechanical pressure of sound waves generates images of a person's interior. Compared with the performance of traditional materials, the stronger response of relaxor-based ferroelectrics yields a more detailed electrical signal that produces better images.

Instead of having somewhat blurry guidance from 2D images to diagnose a cause of pain, assess prenatal condition, guide a biopsy or assess damage after a heart attack, doctors now rely on finely detailed 3D imagery. These modern materials also made it possible to focus ultrasound waves for noninvasive medical treatments of conditions such as tumors or gallstones.

This technology passes individual beams harmlessly through tissue; the beams converge on a target where their effects are concentrated, like light passing through a magnifying glass to ignite paper.

"We figured out at an atomic level why certain materials are so great at mechanically responding to an electric field by changing shape or size," said lead author Michael Manley of ORNL. "The finding provides a basis for high-performance actuators and sensors." Compared to traditional polycrystalline materials, the newer piezoelectric crystals generate a greater mechanical force in response to an applied electric field.

The ORNL-led team was surprised to learn that the key to the impressive performance of relaxor-based ferroelectrics is the vibrations of tiny volumes of the material, called polar nanoregions, in which the positions of a few positive and negative ions shift slightly to create miniscule regions of electric polarization. The mechanical response of relaxor-based ferroelectric crystals is based on rotations of larger electrically aligned domains, about 20 microns in size.

For these macroscopic regions of polarization to rotate, the atomic layers in the entire domain must displace around one another, or shear. Polar nanoregions as narrow as 2 nanometers are responsible for the enhanced electromechanical coupling (i.e., conversion of electrical to mechanical energy, and vice versa) that enables the dramatic improvements in piezoelectric applications by lowering the resistance to this shearing in the crystal.

Understanding how polar nanoregions enhance material performance is relevant to the investigation of broad classes of chemically disordered materials beyond relaxor-based ferroelectrics, including shape-memory alloys, colossal magnetoresistors, magnetic semiconductors and some superconductors.

The new study used neutron scattering measurements of lattice dynamics and local structure to reveal the basis of the giant electromechanical coupling.

Traditional ferroelectric materials are stiff; it is difficult for their large domains to rotate. But in ultra-responsive modern relaxor-based ferroelectrics, vibrations of the polar nanoregions mix with vibrations of the surrounding lattice to form hybrid vibrations. The hybrid vibrations result in a softer, low-energy shear, which makes it easier for the macroscopic regions of polarization to rotate. That means a larger mechanical response when an electric field is applied.

"The point of this whole story is that it's the interaction of these nanoregions with the average lattice which enables a larger mechanical response from a smaller field," Manley said.

Manley's coauthors are Douglas Abernathy, Andrew Christianson, Paul Stonaha, Eliot Specht and John Budai of ORNL; Raffi Sahul of TRS Technologies and Daniel Parshall and Jeffrey Lynn of the National Institute of Standards and Technology.

Said Manley, "Next we'll see if we can understand the limits of what can be done in terms of engineering elastic properties."

The title of the paper is "Giant electromechanical coupling of relaxor ferroelectrics controlled by polar nanoregion vibrations."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Oak Ridge National Laboratory
Space Technology News - Applications and Research

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Use of 'large open-ended pipe piles' could lead to lower-cost bridge construction
West Lafayette IN (SPX) Sep 28, 2016
Civil engineers at Purdue University are leading a project with the Indiana Department of Transportation to learn how to use a type of bridge pile often seen in offshore applications, research that could help reduce the cost of bridge building or replacement of aging spans. The piles will be used in the foundations of a bridge spanning the Wabash River near the Purdue campus on the eastbou ... read more

Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

Curiosity Finds Evidence of Mars Crust Contributing to Atmosphere

Opportunity completes busy week of science and imaging

MAHRS on Mars: Looking at Weather and Habitat on the Surface

Elon Musk envisions 'fun' trips to Mars colony

Software star Google expected to flex hardware muscle

Elon Musk an innovator wary of humanity's future

California dreamin' for Chinese investors in US

Yoyager's Golden Record not just for aliens anymore

Waiting for Shenzhou 11

Tiangong-2 space lab enters preset orbit for docking with manned spacecraft

Batch production of Long March 5 underway

Chinese Space Lab Tiangong-2 Ready to Dock With Manned Spacecraft

NASA, JAXA Focus on Maximizing Scientific Output From Space Station

Manned launch of Soyuz MS-02 maybe postponed to Nov 1

Russia cancels manned space launch over 'technical' issues

US astronauts complete spacewalk for ISS maintenance

NASA develops satellite concept to exploit rideshare opportunities

Arianespace to launch satellites for Australia and India with Ariane 5

New twist in SpaceX rocket blast probe

Launch of Atlas V Rocket With WorldView-4 Satellite Postponed Till October

Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

New Low-Mass Objects Could Help Refine Planetary Evolution

Pluto's heart sheds light on a possible buried ocean

Hubble Finds Planet Orbiting Pair of Stars

Use of 'large open-ended pipe piles' could lead to lower-cost bridge construction

Yes, the rumors are true! Brandeis really has a space chair

Indonesian scavengers scrape a living by recycling

Levitating nanoparticle improves torque sensing in quest for quantum theory fundamentals

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement