Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Study reveals how rivers regulate global carbon cycle
by Staff Writers
Cape Cod MA (SPX) May 20, 2015


The scientists, who included Bernhard Peucker-Ehrenbrink, and Timothy Eglinton (now at ETH Zurich), amassed data on sediments flowing out of 43 river systems all over the world, which cumulatively account for 20 percent of the total sediments discharged by rivers. The representative rivers also encompassed a broad range of climates, vegetation, geological conditions, and levels of disturbance by people.

Humans concerned about climate change are working to find ways of capturing excess carbon dioxide (CO2) from the atmosphere and sequestering it in the Earth. But Nature has its own methods for the removal and long-term storage of carbon, including the world's river systems, which transport decaying organic material and eroded rock from land to the ocean.

While river transport of carbon to the ocean is not on a scale that will bail humans out of our CO2 problem, we don't actually know how much carbon the world's rivers routinely flush into the ocean - an important piece of the global carbon cycle.

But in a study published May 14 in the journal Nature, scientists from Woods Hole Oceanographic Institution (WHOI) calculated the first direct estimate of how much and in what form organic carbon is exported to the ocean by rivers. The estimate will help modelers predict how the carbon export from global rivers may shift as Earth's climate changes.

"The world's rivers act as Earth's circulatory system, flushing carbon from land to the ocean and helping reduce the amount that returns to the atmosphere in the form of heat-trapping carbon dioxide," said lead author and geochemist Valier Galy. "Some of that carbon--'new' carbon--is from decomposed plant and soil material that is washed into the river and then out to sea. But some of it comes from carbon that has long been stored in the environment in the form of rocks-- 'old' carbon--that have been eroded by weather and the force of the river."

The scientists, who included Bernhard Peucker-Ehrenbrink, and Timothy Eglinton (now at ETH Zurich), amassed data on sediments flowing out of 43 river systems all over the world, which cumulatively account for 20 percent of the total sediments discharged by rivers. The representative rivers also encompassed a broad range of climates, vegetation, geological conditions, and levels of disturbance by people.

From these river sediment flow measurements, the research team calculated amounts of particles of carbon-containing plant and rock debris that each river exported.

They estimated that the world's rivers annually transport 200 megatons (200 million tons) of carbon to the ocean. The total equals about .02 percent of the total mass of carbon in the atmosphere. That may not seem like a lot, but over 1000 to 10,000 years, it continues to add up to significant amounts of carbon (20 and 200 percent) extracted from the atmosphere.

Generally, plants convert CO2 from the atmosphere into organic carbon via photosynthesis. But most of this carbon eventually returns to the atmosphere when plant material (or animals that eat plants) decompose. A small fraction of this material, however, ends up in rivers. They carry it out to sea, where some settles to the seafloor and is buried and disconnected from the atmosphere for millions of years and eventually makes its way back to the surface in the form of rocks.

At the same time, rivers also erode carbon-containing rocks into particles carried downstream. The process exposes carbon to air, oxidizing the previously locked-up carbon into carbon dioxide that can leak back out to the atmosphere.

Until now, scientists had no way to distinguish how much of the carbon whisked away by rivers comes from either the biospheric or petrogenic (rock) sources. Without this information, scientists' ability to model or quantitatively predict carbon sequestration under different scenarios was limited.

To solve this dilemma, the scientists found a novel way to distinguish for the first time the sources of that carbon--either from eroded rocks or from decomposed plant and soil material.

They analyzed the amounts of carbon-14, a radioactive isotope, in the river particles. Carbon-14 decays away within about 60,000 years, so it is present only in material that came from living things, and not rocks. Subtracting the portion of particles that did not contain carbon-14, the scientists calculated the percentage that was derived from the terrestrial biosphere: about 80 percent.

But even though biospheric carbon is the major source of carbon exported by rivers, the scientists also discovered that rivers surrounded by greater amounts of vegetation didn't necessarily transport more carbon to the ocean. Instead, the export was "primarily controlled by the capacity of rivers to mobilize and transport" particles. Erosion is the key factor--the more erosion occurs along the river, the more carbon it transfers to sea and sequesters from the air.

"The atmosphere is a small reservoir of carbon compared to rocks, soils, the biosphere, and the ocean," the scientists wrote in Nature. "As such, its size is sensitive to small imbalances in the exchange with and between these larger reservoirs."

The new study gives scientists a firmer handle on measuring the important, and heretofore elusive, role of global rivers in the planetary carbon cycle and enhances their ability to predict how riverine carbon export may shift as Earth's climate changes.

"This study will provide geochemical modelers with new insights on an important link between the global carbon and water cycles," says Don Rice, program director in the National Science Foundation's Division of Ocean Sciences, a major funder of the research.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Woods Hole Oceanographic Institution
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
River sediments, a dynamic reserve of pollutants
Basque Country, Spain (SPX) May 14, 2015
Metals are pollutants that have to be monitored in order to obtain a global overview of the quality of water systems, due to the fact that they remain in the environment. Although sediments act as a drain for pollutants, they can also act as a source of pollutants under certain environmental conditions (like changes in the composition of the water or movement of the sediments owing to a flood ev ... read more


WATER WORLD
NASA's LRO Moves Closer to the Lunar Surface

European Space Agency Director Wants to Set Up a Moon Base

Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

WATER WORLD
Technique for finding signs of life on the Red Planet

Quick Detour by NASA Mars Rover Checks Ancient Valley

Mystery Methane on Mars: The Saga Continues

Auroras on Mars

WATER WORLD
Photonic Laser Thruster Propels Simulated Spacecraft

Russia races to replace Sarah Brightman as space tourist

Potentially Revolutionary Mission Heading for 2016 Launch

High-tech Analysis of Orion Heat Shield Underway

WATER WORLD
3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

WATER WORLD
ISS Partners Adjust Spacecraft Schedule

Samantha's longer stay on ISS

Italian astronaut shows how to use restroom on ISS online

Russia delays return of ISS crew members after supply ship failure

WATER WORLD
DirecTV-15 and SKY Mexico-1 integrated for Ariane 5 heavy-lift mission

Russia to Launch US Comms Satellite Into Space

Report: SpaceX Falcon 9 rocket certified to fly NASA missions

Fifth Vega takes shape for its flight with Sentinel-2A

WATER WORLD
Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

Astronomers detect drastic atmospheric change in super Earth

New exoplanet too big for its star

WATER WORLD
Printing 3-D graphene structures for tissue engineering

Tunable liquid metal antennas

Seashell strength inspires stress tests

Nanomaterials inspired by bird feathers turn light into color




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.