Subscribe free to our newsletters via your
. 24/7 Space News .




EXO LIFE
Study Tests Theory that Life Originated at Deep Sea Vents
by Staff Writers
Cape Cod MA (SPX) Apr 11, 2014


Making methanethiol from the chemicals available in hydrothermal black smoker fluids was thought to have been an easy process. To test this theory, the researchers collected fluids in isobaric gas-tight samplers (IGTs) from black smokers and analyzed them for the presence of methanethiol. Image courtesy Chris German, Woods Hole Oceanographic Institution.

One of the greatest mysteries facing humans is how life originated on Earth. Scientists have determined approximately when life began (roughly 3.8 billion years ago), but there is still intense debate about exactly how life began. One possibility has grown in popularity in the last two decades - that simple metabolic reactions emerged near ancient seafloor hot springs, enabling the leap from a non-living to a living world.

Recent research by geochemists Eoghan Reeves, Jeff Seewald, and Jill McDermott at Woods Hole Oceanographic Institution (WHOI) is the first to test a fundamental assumption of this 'metabolism first' hypothesis, and finds that it may not have been as easy as previously assumed. Instead, their findings could provide a focus for the search for life on other planets. The work is published in Proceedings of the National Academy of Science.

In 1977, scientists discovered biological communities unexpectedly living around seafloor hydrothermal vents, far from sunlight and thriving on a chemical soup rich in hydrogen, carbon dioxide, and sulfur, spewing from the geysers. Inspired by these findings, scientists later proposed that hydrothermal vents provided an ideal environment with all the ingredients needed for microbial life to emerge on early Earth.

A central figure in this hypothesis is a simple sulfur-containing carbon compound called "methanethiol" - a supposed geologic precursor of the Acetyl-CoA enzyme present in many organisms, including humans. Scientists suspected methanethiol could have been the "starter dough" from which all life emerged.

The question Reeves and his colleagues set out to test was whether methanethiol-a critical precursor of life - could form at modern day vent sites by purely chemical means without the involvement of life. Could methanethiol be the bridge between a chemical, non-living world and the first microbial life on the planet?

Carbon dioxide, hydrogen and sulfide are the common ingredients present in hydrothermal black smoker fluids. "The thought was that making methanethiol from these basic ingredients at seafloor hydrothermal vents should therefore have been an easy process," adds Reeves.

The theory was appealing, and solved many of the basic problems with existing ideas that life may have been carried to Earth on a comet or asteroid; or that genetic material emerged first - the "RNA World" hypothesis. However, says Reeves, "it's taken us a while to get out there and actually start to test this 'metabolism first' idea in the natural environment, by using modern vents as analogs for those that were around when life first began."

And when they did get out there, the scientists were surprised by what they found.

To directly measure methanethiol, the researchers went to hydrothermal vent sites where the chemistry predicted they would find abundant methanethiol, and others where very little was predicted to form. In total, they measured the distribution of methanethiol in 38 hydrothermal fluids from multiple differing geologic environments including systems along the Mid-Atlantic Ridge, Guaymas Basin, the East Pacific Rise, and the Mid-Cayman Rise over a period between 2008 and 2012.

"Some systems are very rich in hydrogen, and when you have a lot of hydrogen it should, in theory, be very easy to make a lot of methanethiol," says Reeves. The fluids were collected in isobaric gas-tight samplers (IGTs) developed by Jeffrey Seewald, which maintain fluids at their natural pressure and allow for dissolved gas analyses.

Instead of an abundance of methanethiol, the data they collected in the hydrogen-rich environments showed very little was present. "We actually found that it doesn't matter how much hydrogen you have in black smoker fluids, you don't seem to be making a lot of methanethiol where you should be making a lot of it," Reeves says.

Surprisingly, in the low-hydrogen environments, where much less should form, the research actually found more methanethiol than they had predicted, contradicting the original idea of how methanethiol forms. Overall, this means that jump-starting proto-metabolic reactions in hydrogen-rich early Earth hydrothermal systems through carbon-sulfur chemistry would likely have been much harder than many had assumed.

Critically, the researchers found an abundance of methanethiol being formed in low temperature fluids (below about 200 C), where hot black smoker fluid mixes with colder sea water beneath the seafloor.

The presence of other telltale markers in these fluids, such as ammonia - a byproduct of biomass breakdown - strongly suggests these fluids are 'cooking' existing microbial organic matter. The breakdown of existing subseafloor life when conditions get too hot may therefore be responsible for producing large amounts of methanethiol.

"What we essentially found in our survey is that we don't think methanethiol is forming by purely chemical means without the involvement of life. This might be disappointing news for anyone assuming an easy start for hydrothermal proto-metabolism," says Reeves. "However, our finding that methanethiol may be readily forming as a breakdown product of microbial life provides further indication that life is present and widespread below the seafloor and is very exciting."

The researchers believe this new understanding could change how we think about searching for life on other planets.

"The upside is, now we have a pretty simple marker for life. Someday if we can land a rover on the ice-covered oceans of Jupiter's moon Europa - another place in the Solar System that may host hydrothermal vents, and possibly life - and successfully drill through the ice, the first thing it should probably try to measure is methanethiol," Reeves says.

"This is already something scientists are thinking about, and it is exciting to think this might even happen in our life time."

As for the search for the origins of life, Reeves agrees that hydrothermal vents are still a very favorable place for life to emerge, but, he says, "maybe methanethiol just wasn't a good starter dough. The hydrothermal environment is still a perfect place to support early life, and the question of how it all started is still open."

This research was supported by grants from the National Science Foundation and NASA. Additional funds were provided by the WHOI Deep Ocean Exploration Institute, InterRidge, and the Deutsche Forschungsgemeinschaft Research Center/Cluster of Excellence MARUM "The Ocean in the Earth System" (E.P.R.).

.


Related Links
Woods Hole Oceanographic Institution
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EXO LIFE
A Question of Atmospheres: On Earth and Beyond
Moffett Field CA (SPX) Apr 02, 2014
Scientists recently discovered the source of naturally occurring aerosol particles in Earth's atmosphere that play an important role in cloud formation. The particles in questions are known as 'climate-active organic aerosols,' and are vapors composed of large molecules that contain almost equal numbers of carbon, oxygen and hydrogen. The international research team found that these vapors ... read more


EXO LIFE
Russian Federal Space Agency is elaborating Moon exploration program

Science, Discovery Channels to broadcast private race to the moon

Take the Plunge: LADEE Impact Challenge

Land a Lunar Laser Reflector Now!

EXO LIFE
Mars Exploration in a Deep Mine

Opportunity Moves Further Southwest On Murray Ridge

Images From NASA Mars Rover Include Bright Spots

What's so hard about counting craters?

EXO LIFE
Orion Avionics System Ready for First Test Flight

New Catalog Brings NASA Software Down to Earth

Using ethic frameworks for decisions about health standards on long duration spaceflights

China, Asia-Pacific, will power world tourism: survey

EXO LIFE
China launches experimental satellite

Tiangong's New Mission

"Space Odyssey": China's aspiration in future space exploration

China to launch first "space shuttle bus" this year

EXO LIFE
Progress Departs, New Cargo Ships Awaiting Launch

Progress M-22M to be undocked from ISS and sent on science mission

Russian cargo ship docks to space station

Is "divorce" between Russian and US space agencies possible?

EXO LIFE
On-board camera provides a unique perspective on Arianespace Flight VS07

The DZZ-HR satellite is fueled for Arianespace's upcoming Vega launch

EUTELSAT 3B Mission Status Update

Soyuz ready for Sentinel-1A satellite launch

EXO LIFE
The Importance of Planetary Plumes

Orbital physics is child's play with 'Super Planet Crash'

Lick's Automated Planet Finder: First robotic telescope for planet hunters

Space Sunflower May Help Snap Pictures of Planets

EXO LIFE
Headwall Extends Global Reach in Asia/Pac and Israel

Hyperspectral Software Announced for Airborne Applications

Vanguard Space Technologies Antenna Reflectors on Amazonas Satellite Launch

Materials and electronics that dissolve when triggered




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.