. 24/7 Space News .
STELLAR CHEMISTRY
Study Explains Why Galaxies Stop Creating Stars
by Iqbal Pittalwala for UC Riverside News
Riverside CA (SPX) Jul 12, 2016


ESO 137-001 is a perfect example of a spiral galaxy zipping through a crammed cluster of galaxies. Gas is being pulled from its disc in a process called ram pressure stripping. The galaxy appears to be losing gas as it plunges through the Norma galaxy cluster. Image courtesy NASA, ESA, and Hubble Heritage Team (STSCI/AURA). For a larger version of this image please go here.

Galaxies come in three main shapes - elliptical, spiral (such as the Milky Way) and irregular. They can be massive or small. To add to this mix, galaxies can also be blue or red. Blue galaxies are still actively forming stars. Red ones mostly are not currently forming stars, and are considered passive.

The processes that cause galaxies to "quench," that is, cease star formation, are not well understood, however, and constitute an outstanding problem in the study of the evolution of galaxies. Now, using a large sample of around 70,000 galaxies, a team of researchers led by University of California, Riverside astronomers Behnam Darvish and Bahram Mobasher may have an explanation for why galaxies stop creating stars.

The research team, which included scientists at the California Institute of Technology and Lancaster University, United Kingdom, combed through available data from the COSMOS UltraVISTA survey that give accurate distance estimates for galaxies over the past 11 billion years, and focused on the effects of external and internal processes that influence star formation activity in galaxies.

External mechanisms, the research team notes, include drag generated from an infalling galaxy within a cluster of galaxies, which pulls gas away; multiple gravitational encounters with other galaxies and the dense surrounding environment, resulting in material being stripped away from the galaxy; and the halting of the supply of cold gas to the galaxy, thus strangling the galaxy of the material needed to produce new stars over a prolonged period of time.

The researchers explain that internal mechanisms include the presence of a black hole (in which jets, winds, or intense radiation heat up hydrogen gas in the galaxy or blow it out completely, thus preventing the gas from cooling and contracting to form stars) and "stellar outflow" (for example, high-velocity winds produced by massive young stars and supernovae that push the gas out of the host galaxy).

"By using the observable properties of the galaxies and sophisticated statistical methods, we show that, on average, external processes are only relevant to quenching galaxies during the last eight billion years," said Darvish, a former graduate student in the UC Riverside Department of Physics and Astronomy and the first author of the research paper that appears in The Astrophysical Journal. "On the other hand, internal processes are the dominant mechanism for shutting off star-formation before this time, and closer to the beginning of the universe."

The finding gives astronomers an important clue towards understanding which process dominates quenching at various cosmic times. As astronomers detect quenched non-star-forming galaxies at different distances (and therefore times after the Big Bang), they now can more easily pinpoint what quenching mechanism was at work.

In astronomy, much debate continues on whether it is only internal, external or a combination of both phenomena that makes a galaxy quench star formation. It is still not clear what processes are mostly responsible, and unclear, too, is the fractional role of different physical processes in shutting down the star-formation. It is also not fully understood when these processes come to play an important role in the evolutionary life of galaxies.

"The situation becomes more complex when we realize that all these mechanisms may depend on properties of galaxies being quenched, they may evolve with time, they act at different time-scales - fast or slow - and they may depend on the properties of the quenching factors as well," Darvish said.

Mobasher, a professor of physics and astronomy who supervised Darvish during the course of the research, said, "We found that on average the external processes act in a relatively short time-scale, around one billion years, and can more efficiently quench galaxies that are more massive. Internal effects are more efficient in dense clusters of galaxies.

"The time-scale is very important. A short time-scale suggests that we need to look for external physical processes that are fast in quenching. Another important result of the work is that internal and external processes do not act independently of each other in shutting-off the star formation."

Darvish and Mobasher were joined in the research by David Sobral at Lancaster University, the United Kingdom; and Alessandro Rettura, Nick Scoville, Andreas Faisst and Peter Capak at the California Institute of Technology. Darvish graduated from UCR with a Ph.D. in astronomy in 2015. The bulk of the research was done while he was working toward his doctoral degree. He is now a postdoctoral scholar at Caltech.

Next, the research team will work on extending this study to the environment of galaxies on much larger scales (in the cosmic web).

The research was funded by financial support from NASA. Mario De Leo Winkler, a postdoctoral researcher in the UCR Department of Physics and Astronomy, made significant contributions to this article.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
COSMOS UltraVISTA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Hitomi Finds Quiet Space in the Heart of the Perseus Galaxy Cluster
New Haven CT (SPX) Jul 11, 2016
In its brief time gathering data this year, the Hitomi X-ray Observatory discovered something quite serene: the calm core in a massive cluster of galaxies. Scientists from the international Hitomi mission report July 6 in the journal Nature that a "remarkably quiescent atmosphere" exists at the heart of the Perseus cluster, located in the constellation Perseus. The new information, obtaine ... read more


STELLAR CHEMISTRY
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

STELLAR CHEMISTRY
Curiosity Mars Rover Enters Precautionary Safe Mode

Scientists' Innovation Began With 'Wanting to Understand Why'

Mars Canyons Study Adds Clues about Possible Water

Opportunity finishing science investigations at the center of Marathon Valley

STELLAR CHEMISTRY
Mathematical framework prioritizes key patterns to accelerate scientific discovery

A decade of plant biology in space

Exploring inner space for outer space

Quantum technologies to revolutionize 21st century

STELLAR CHEMISTRY
Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

China to launch its largest carrier rocket later this year

China committed to peaceful use of outer space

STELLAR CHEMISTRY
New Crew Members, Including NASA Biologist, Launch to Space Station

Three astronauts blast off for ISS in upgraded Soyuz craft

Soyuz-FG to launch new crew to ISS fully assembled

Down to Earth: Returned astronaut relishes little things

STELLAR CHEMISTRY
Ukraine, US Plan to Launch Jointly-Developed Space Rocket in Coming Months

Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

STELLAR CHEMISTRY
Lush Venus? Searing Earth? It could have happened

A surprising planet with three suns

Teenagers at Keele University Discover Possible New Exoplanet

What Happens When You Steam a Planet

STELLAR CHEMISTRY
Winning Students Selected for Future Engineers Star Trek Replicator Challenge

Russian Scientists Propose Charging Satellites Using Land-Based Lasers

Researchers determine fundamental limits of invisibility cloaks

Japan satellite made 'surprise' find before failure









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.