. 24/7 Space News .
TECTONICS
Study: Early organic carbon got deep burial in mantle
by Staff Writers
Houston TX (SPX) Apr 26, 2017


This schematic depicts the efficient deep subduction of organic (reduced) carbon, a process that could have locked significant amounts of carbon in Earth's mantle and resulted in a higher percentage of atmospheric oxygen. Based on new high-pressure, high-temperature experiments, Rice University petrologists argue that the long-term sequestration of organic carbon from this process began as early as 2.5 billion years ago and helped bring about a well-known buildup of oxygen in Earth's atmosphere - the "Great Oxidation Event" - about 2.4 billion years ago. Image courtesy of R. Dasgupta/Rice University.

Rice University petrologists who recreated hot, high-pressure conditions from 60 miles below Earth's surface have found a new clue about a crucial event in the planet's deep past. Their study describes how fossilized carbon - the remains of Earth's earliest single-celled creatures - could have been subsumed and locked deep in Earth's interior starting around 2.4 billion years ago - a time when atmospheric oxygen rose dramatically. The paper appears online this week in the journal Nature Geoscience.

"It's an interesting concept, but in order for complex life to evolve, the earliest form of life needed to be deeply buried in the planet's mantle," said Rajdeep Dasgupta, a professor of Earth science at Rice. "The mechanism for that burial comes in two parts. First, you need some form of plate tectonics, a mechanism to carry the carbon remains of early life-forms back into Earth. Second, you need the correct geochemistry so that organic carbon can be carried deeply into Earth's interior and thereby removed from the surface environment for a long time."

At issue is what caused the "great oxidation event," a steep increase in atmospheric oxygen that is well-documented in countless ancient rocks. The event is so well-known to geologists that they often simply refer to it as the "GOE." But despite this familiarity, there's no scientific consensus about what caused the GOE. For example, scientists know Earth's earliest known life, single-celled cyanobacteria, drew down carbon dioxide from the atmosphere and released oxygen. But the appearance of early life has been pushed further and further into the past with recent fossil discoveries, and scientists now know that cyanobacteria were prevalent at least 500 million years before the GOE.

"Cyanobacteria may have played a role, but the GOE was so dramatic - oxygen concentration increased as much as 10,000 times - that cyanobacteria by themselves could not account for it," said lead co-author Megan Duncan, who conducted the research for her Ph.D. dissertation at Rice. "There also has to be a mechanism to remove a significant amount of reduced carbon from the biosphere, and thereby shift the relative concentration of oxygen within the system," she said.

Removing carbon without removing oxygen requires special circumstances because the two elements are prone to bind with one another. They form one of the key components of the atmosphere - carbon dioxide - as well as all types of carbonate rocks.

Dasgupta and Duncan found that the chemical composition of the "silicate melt" - subducting crustal rock that melts and rises back to the surface through volcanic eruptions - plays a crucial role in determining whether fossilized organic carbon, or graphite, sinks into the mantle or rises back to the surface through volcanism.

Duncan, now a research scientist at the Carnegie Institution in Washington, D.C., said the study is the first to examine the graphite-carrying capacity of a type of melt known as rhyolite, which is commonly produced deep in the mantle and carries significant amounts of carbon to the volcanoes. She said the graphite-carrying capacity of rhyolitic rock is crucial because if graphite is prone to hitching a ride back to the surface via extraction of rhyolitic melt, it would not have been buried in sufficient quantities to account for the GOE.

"Silicate composition plays an important role," she said. "Scientists have previously looked at carbon-carrying capacities in compositions that were much more magnesium-rich and silicon-poor. But the compositions of these rhyolitic melts are high in silicon and aluminum and have very little calcium, magnesium and iron. That matters because calcium and magnesium are cations, and they change the amount of carbon you can dissolve."

Dasgupta and Duncan found that rhyolitic melts could dissolve very little graphite, even when very hot.

"That was one of our motivations," said Dasgupta, professor of Earth science. "If subduction zones in the past were very hot and produced a substantial amount of melt, could they completely destabilize organic carbon and release it back to the surface?

"What we showed was that even at very, very high temperatures, not much of this graphitic carbon dissolves in the melt," he said. "So even though the temperature is high and you produce a lot of melt, this organic carbon is not very soluble in that melt, and the carbon gets buried in the mantle as a result.

"What is neat is that with the onset and the expected tempo of crustal burial into the deep mantle starting just prior to the GOE, and with our experimental data on the efficiency of deep burial of reduced carbon, we could model the expected rise of atmospheric oxygen across the GOE," Dasgupta said.

The research supports the findings of a 2016 paper by fellow Rice petrologist Cin-Ty Lee and colleagues that suggested that plate tectonics, continent formation and the appearance of early life were key factors in the development of an oxygen-rich atmosphere on Earth.

Duncan, who increasingly focuses on exoplanetary systems, said the research could provide important clues about what scientists should look for when evaluating which exoplanets could support life.

Research paper

TECTONICS
'Nesting doll' minerals offer clues to Earth's mantle dynamics
Washington DC (SPX) Apr 10, 2017
Recovered minerals that originated in the deep mantle can give scientists a rare glimpse into the dynamic processes occurring deep inside of the Earth and into the history of the planet's mantle layer. A team led by Yingwei Fei, a Carnegie experimental petrologist, and Cheng Xu, a field geologist from Peking University, has discovered that a rare sample of the mineral majorite originated a ... read more

Related Links
Rice University
Tectonic Science and News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECTONICS
Lunar, Martian Greenhouses Designed to Mimic Those on Earth

NASA spacesuits over budget, tight on timeline: audit

Astronaut Airman launched to International Space Station

'Better you than me,' Trump tells record-breaking astronaut

TECTONICS
New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

RSC Energia, Boeing Hammer Out a Deal on Sea Launch Project

India seeks status as a major space power with more satellite launches

India to Launch Carrier Rocket With Higher Payload Capacity in May

TECTONICS
How Old are Martian Gullies

SwRI-led team discovers lull in Mars' giant impact history

Opportunity Nears 'Perseverance Valley'

Engineers investigate simple, no-bake recipe to make bricks on Mars

TECTONICS
China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

Macao marks 2nd China Space Day with astronaut sharing space experience

China's Long March-5 Y2 carrier rocket leaves for launch site

TECTONICS
ESA boosting its Argentine link with deep space

Arianespace, Intelsat and SKY Perfect JSAT sign a new Launch Services Agreement, for Horizons 3e

Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

TECTONICS
Man-Made Space Junk Puts Astronauts, Operational Spacecraft in Serious Danger

Engineering technique is damaging materials research reveals

Finding order and structure in the atomic chaos where materials meet

Changing the game

TECTONICS
'Iceball' Planet Discovered Through Microlensing

What can we learn from dinosaur proteins

'On Verge of Most Profound Discovery Ever,' NASA Tells US Congress

Rocky super-earth found in habitable zone of small red star

TECTONICS
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.