Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



ENERGY TECH
Stretching the limits of elastic conductors
by Staff Writers
Tokyo, Japan (SPX) May 26, 2017


Each fingertip pressure sensor mounted on this glove is connected to an LED. The intensity of the LEDs varies according to the pressure applied by the fingertips. The glove makes it possible to ascertain degrees of pressure that are difficult to obtain just by examining images. Credit 2017 Someya Group, The University of Tokyo.

A newly developed printable elastic conductor retains high conductivity even when stretched to as much as five times its original length, says a Japanese team of scientists. The new material, produced in paste-like ink form, can be printed in various patterns on textiles and rubber surfaces as stretchable wiring for wearable devices incorporating sensors, as well as give human skin-like functions to robot exteriors.

The development of wearable devices such as those monitoring a person's health or physical performance, like heart rate or muscle activity, is currently underway with some products already on the market. Moreover, with the advent of robots in areas such as health care and retail, in addition to manufacturing, future applications for sensitive elastic conductive material that can withstand high strain from stretching are likely to increase at a fever pitch.

"We saw the growing demand for wearable devices and robots," says Professor Takao Someya at the University of Tokyo's Graduate School of Engineering, who supervised the current study. "We felt it was very important to create printable elastic conductors to help meet the need and realize the development of the products," he adds.

To achieve a high degree of stretchability and conductivity, the researchers mixed four components to create their elastic conductor. They found that their conductive paste consisting of micrometer-sized silver (Ag) flakes, fluorine rubber, fluorine surfactant - commonly known as a substance that reduces surface tension in liquid - and organic solvent to dissolve the fluorine rubber markedly outperformed the elastic conductor they had previously developed in 2015.

Without stretching, printed traces of the new conductor recorded 4,972 siemens per centimeter (S/cm), high conductivity using the common measure for assessing electrical conductance.

When stretched by 200 percent, or to three times its original length, conductivity measured 1,070 S/cm, which is nearly six times the value of the previous conductor (192 S/cm). Even when stretched by 400 percent, or to five times its original length, the new conductor retained high conductivity of 935 S/cm, the highest level recorded for this amount of stretching.

Magnification by a scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that the high performance of the conductor was due to the self-formation of silver (Ag) nanoparticles - one-thousandth the size of the Ag flakes and dispersed uniformly between the flakes in the fluorine rubber - after the conductive composite paste was printed and heated. "We did not expect the formation of Ag nanoparticles," comments Someya on their surprising discovery.

Furthermore, the scientists found that by adjusting variables like the molecular weight of the fluorine rubber, they could control the distribution and population of nanoparticles, while the presence of surfactant and heating accelerated their formation and influenced their size.

To demonstrate the feasibility of the conductors, the scientists fabricated fully printed stretchable pressure and temperature sensors - that can sense weak force and measure heat close to body and room temperatures - wired with the printable elastic conductors on textiles.

The sensors, which can be installed easily by laminating onto surfaces by hot pressing with heat and pressure, took precise measurements even when stretched by 250 percent.

This is enough to accommodate high-stress flexible areas such as elbows and knees on conformable, form-fitting sportswear or joints on robotic arms often designed to surpass human capabilities and thus undergo higher strain.

The new material, which is durable and suitable for high-capacity printing methods like stencil or screen printing that can cover large surface areas, points to easy installation, and its properties of forming Ag nanoparticles (which are a fraction of the cost of Ag flakes) when printed provide an economical alternative for realizing a wide range of applications for wearables, robotics and deformable electronic devices.

The team is now exploring substitutes for Ag flakes to further reduce costs, while they are also looking at other polymers, like nonfluorine rubbers, and various combinations of materials and processes to fabricate elastic conductors with similar high performance.

Naoji Matsuhisa, Daishi Inoue, Peter Zalar, Hanbit Jin, Yorishige Matsuba, Akira Itoh, Tomoyuki Yokota, Daisuke Hashizume, and Takao Someya, Printable Elastic Conductors by in situ Formation of Silver Nanoparticles from Silver Flakes, Nature Materials (2017).

ENERGY TECH
Laser pulses reveal the superconductors of the future
Trieste, Italy (SPX) May 15, 2017
Another step forward towards superconductivity at room temperature: an experiment at the cutting edge of condensed matter physics and materials science has revealed that the dream of more efficient energy usage can turn into reality. An international collaboration, led by the scientists of Italy's International School for Advanced Studies (SISSA) in Trieste, Universita Cattolica di Brescia ... read more

Related Links
University of Tokyo
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
DARPA Picks Design for Next-Generation Spaceplane

First Year of BEAM Demo Offers Valuable Data on Expandable Habitats

SDL-Supported SmallSat Launched from International Space Station

'Victory' for US astronauts on critical spacewalk to replace power box

ENERGY TECH
Neptune: Neutralizer-free plasma propulsion

Dream Chaser Spacecraft Passes Major Milestone

NASA's Space Launch System Engine Testing Heats Up

Successful launch puts New Zealand in space race

ENERGY TECH
Preparations Continue Before Driving into 'Perseverance Valley'

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Schiaparelli landing investigation completed

ENERGY TECH
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

ENERGY TECH
AsiaSat 9 ready for shipment

SES Networks offers new hybrid resiliency service

Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

ENERGY TECH
Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

Arralis launches plug and play Ka band chipset

A new tool for discovering nanoporous materials

One-dimensional crystals for low-temperature thermoelectric cooling

ENERGY TECH
Water forms superstructure around DNA, new study shows

Russia thinks microorganisms may be living outside the space station

NASA Scientist Parlays Experience to Build Ocean Worlds Instrument

The race to trace TRAPPIST-1h

ENERGY TECH
NASA's Juno probe forces 'rethink' on Jupiter

A whole new Jupiter with first science results from Juno

First Juno Science Results Supported by University's Jupiter 'Forecast'

First results from Juno show cyclones and massive magnetism




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement