. 24/7 Space News .
TECH SPACE
Stretchable electronics that quadruple in length
by Staff Writers
Zurich, Switzerland (SPX) Mar 08, 2016


Watch a video on the research here.

Conductive tracks are usually hard printed on a board. But those recently developed at EPFL are altogether different: they are almost as flexible as rubber and can be stretched up to four times their original length and in all directions.

And they can be stretched a million times without cracking or interrupting their conductivity. The invention is described in an article published in the journal Advanced Materials.

Both solid and flexible, this new metallic and partially liquid film offers a wide range of possible applications. It could be used to make circuits that can be twisted and stretched - ideal for artificial skin on prosthetics or robotic machines.

It could also be integrated into fabric and used in connected clothing. And because it follows the shape and movements of the human body, it could be used for sensors designed to monitor particular biological functions.

"We can come up with all sorts of uses, in forms that are complex, moving or that change over time," said Hadrien Michaud, a PhD student at the Laboratory for Soft Bioelectronic Interfaces (LSBI) and one of the study authors.

Extensive research has gone into developing an elastic electronic circuit. It is a real challenge, as the components traditionally used to make circuits are rigid. Applying liquid metal to a thin film in polymer supports with elastic properties naturally seems like a promising approach.

Thin and reliable
Owing to the high surface tension of some of these liquid metals, experiments conducted so far have only produced relatively thick structures. "Using the deposition and structuring methods that we developed, it's possible to make tracks that are very narrow - several hundredths of a nanometer thick - and very reliable," said Stephanie Lacour, who runs the lab.

Apart from their unique fabrication technique, the researchers' secret lies in the choice of ingredients, an alloy of gold and gallium.

"Not only does gallium possess good electrical properties, but it also has a low melting point, around 30o," said Arthur Hirsch, a PhD student at LSBI and co-author of the study.

"So it melts in your hand, and, thanks to the process known as supercooling, it remains liquid at room temperature, even lower."

The layer of gold ensures the gallium remains homogeneous, preventing it from separating into droplets when it comes into contact with the polymer, which would ruin its conductivity.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Ecole Polytechnique Federale de Lausanne
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Electron-beam imaging can see elements that are 'invisible' to common methods
Berkeley CA (SPX) Mar 08, 2016
Electrons can extend our view of microscopic objects well beyond what's possible with visible light--all the way to the atomic scale. A popular method in electron microscopy for looking at tough, resilient materials in atomic detail is called STEM, or scanning transmission electron microscopy, but the highly-focused beam of electrons used in STEM can also easily destroy delicate samples. T ... read more


TECH SPACE
China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

TECH SPACE
Great tilt gave Mars a new face

Space simulation crew hits halfway mark til August re-entry

Proton-M carrier rocket assembled ahead of Mars Mission

Monster volcano gave Mars extreme makeover: study

TECH SPACE
First tomatoes, peas harvested from mock Martian farm

Sore, but no taller, astronaut Scott Kelly adjusts to Earth

Test Dummies to Help Assess Crew Safety in Orion

Commercial Crew: Building in Safety from the Ground Up in a Unique Way

TECH SPACE
Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

China's ambition after space station

Sky is the limit for China's national strategy

TECH SPACE
International Space Station's '1-year crew' returns to Earth

Scott Kelly and Mikhail Kornienko return to Earth after One-Year Mission

Paragon wins NASA ISS water processor development contract

NASA's Science Command Post Supports Scott Kelly's Year In Space

TECH SPACE
SpaceX launches SES-9 satellite to GEO; but booster landing fails

US Space Company in Talks With India to Launch Satellite

Ariane 5 launch contributes to Ariane 6 development

At last second, SpaceX delays satellite launch again

TECH SPACE
Evidence found for unstable heavy element at solar system formation

Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

TECH SPACE
Electron-beam imaging can see elements that are 'invisible' to common methods

New radar system set for testing

Scaling up tissue engineering

UMass Amherst team offers new, simpler law of complex wrinkle patterns









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.