Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















TIME AND SPACE
Streamlining the measurement of phonon dispersion
by Staff Writers
Washington DC (SPX) Mar 15, 2017


Picture of the high energy resolution electron source developed by Bocquet and co-workers. Due to the geometrical constraints induced by the use of a hemispherical electron analyzer, part of the electron source had to be redesigned to bridge the large distance between the sample and the high energy resolution electron source. Image courtesy Harald Ibach, Francois C. Bocquet, Jessica Sforzini, Serguei Soubatch, F. Stefan Tautz.

As the interest in renewable energy and energy-efficient devices continues to grow, so has the scientific community's interest in discovering and designing new materials with desirable physical properties that could be used in solar cells or energy storage devices.

A key tool in this work is High Resolution Electron Energy Loss Spectroscopy (HREELS), which involves exposing a material to a beam of electrons of known kinetic energy. While the electrons lose energy when they bounce off atoms in the surface of the material, that energy loss can be measured and used to make important determinations about the material.

"Phonons, collective excitations that rule the movement of atoms within the crystal lattice of a solid, are a subject of particular interest for scientists because they affect physical properties such as a given material's capacity to conduct electricity or heat," explained Francois C. Bocquet, a physicist at the Forschungszentrum Julich, a scientific research center in Julich, Germany.

"These properties are important because they affect the suitability of a material for use in different applications."

"The challenge has been that it can be very time consuming for surface scientists using HREELS to measure phonons' dispersion or net loss of energy at all angles. Until now, it was only possible to measure one angle and one loss of energy at a time, so it could take more than a day to measure the dispersion.

"In fact, it could take as much as a week if you didn't happen to choose an appropriate kinetic energy for the electrons in the incoming beam because this impacts the intensity of the phonons and thus the ease with which they can be measured," Bocquet said.

To address these problems, Bocquet and his colleagues have adapted an instrument used for HREELS with new components so that the phonon dispersion of a given material can be measured in a matter of minutes. They describe their device this week in the journal Review of Scientific Instruments, from AIP Publishing.

"Our apparatus has two major components that allow us to improve the measurement of phonon dispersion," Bocquet said, whose research is also funded by the Initiative and Networking Fund of the Helmholtz Association.

"The first is a hemispherical electron analyzer, which has been used successfully for more than a decade in Angular-Resolved Photoelectron Spectroscopy. The second is a high energy-resolution electron source that was developed in house.

"It can be optimized with software that we created so that electrons of the incoming beam have the desired kinetic energy and are focused on a very small area on the sample that fits the field of view of the hemispherical electron analyzer."

The improved time frame for determining phonon dispersion has the added benefit of allowing surface scientists to address samples whose measurement was too cumbersome until now.

"Surface scientists typically work in vacuum conditions because the surfaces they study must be extremely clean and have no contaminants. Since no vacuum is ever perfect, however, they usually have to stop measuring a given sample after a few hours and prepare it again. Cutting down the time to measure dispersion means that it is now possible to measure samples that are difficult to prepare and short-lived," Bocquet said.

Bocquet and his colleagues intend to use their device to investigate materials related to graphene, a well-known substance that has attracted a lot of interest among scientists in the last decade. They are also eager to see what materials other surface scientists use it to study.

"There are so many interesting new materials being developed whose physical properties could be understood more deeply if we could measure their phonon dispersion," Bocquet said. "This information would help scientists and engineers to determine these materials' suitability for use in new devices that address pressing global challenges."

The article, "Electron energy loss spectroscopy with parallel readout of energy and momentum," is authored by Harald Ibach, Francois C. Bocquet, Jessica Sforzini, Serguei Soubatch and F. Stefan Tautz. The article appeared in Review of Scientific Instruments Tuesday, March 14, 2017 (DOI: 10.1063/1.49775290).

TIME AND SPACE
Magnetic fields at the crossroads
Washington DC (SPX) Mar 09, 2017
From compasses used in ancient overseas navigation to electrical motors, sensors, and actuators in cars, magnetic materials have been a mainstay throughout human history. In addition, almost all information that exists in contemporary society is recorded in magnetic media, like hard drive disks. A team of researchers at the Brazilian Center for Physics Research is studying the motion of vo ... read more

Related Links
American Institute of Physics
Understanding Time and Space

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
New Plant Habitat Will Increase Harvest on International Space Station

NASA Releases Free Software Catalog

India has capability to develop space station, says top official

Orion spacecraft achieves key safety milestone

TIME AND SPACE
Space squadron supports record-breaking satellites launch

Europe launches fourth Earth monitoring satellite

Elon Musk: tech dreamer reaching for sun, moon and stars

Blue Origin shares video of New Glenn rocket

TIME AND SPACE
New evidence for a water-rich history on Mars

Humans May Quickly Evolve on Mars, Biologist Claims

NASA Orbiter Steers Clear of Mars Moon Phobos

Remnants of a mega-flood on Mars

TIME AND SPACE
Riding an asteroid: China's next space goal

China launches experiment satellite "TK-1"

China Plans to Launch 1st Probe to Mars in Summer 2020

China to launch space station core module in 2018

TIME AND SPACE
How low can you go? New project to bring satellites nearer to Earth

Teal Group Pegs Value of Space Payloads Through 2036 at Over $250 Billion

Iridium Safety Voice Communications Installs Surge Past 500 Aircraft

Eutelsat Signs up for Blue Origin's New Glenn Launcher

TIME AND SPACE
MIPT physicists predict the existence of unusual optical composites

Sandia creates 3-D metasurfaces with optical possibilities

First exact model for diffusion in magnesium alloys

New application of the selective laser melting method

TIME AND SPACE
Kepler Provides Another Peek at Ultra-cool Neighbor

Hunting for giant planet analogs in our own backyard

Faraway Planet Systems Are Shaped Like the Solar System

Biochemical 'fossil' shows how life may have emerged without phosphate

TIME AND SPACE
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement