. 24/7 Space News .
ENERGY TECH
Stanford scientists use DNA to investigate cleaner energy sources
by Staff Writers
Stanford CA (SPX) Apr 22, 2016


Spherical nanoparticles (light grey) embedded with DNA attached to a single grain of sand as seen through a scanning electron microscope following the Stanford geothermal team's experiment. Image courtesy of Yuran Zhang. For a larger version of this image please go here.

The key to unlocking cleaner energy might be in our DNA, according to a new study by Stanford scientists. By combining synthetic DNA with microscopic particles, Yuran Zhang and a team of geothermal energy researchers hope to tap into the widely available but often overlooked cleaner energy source all over the world.

Geothermal energy is the heat of the earth, and geothermal power is generated by extracting that heat and converting it to electricity. Effectively, the heat moves through irregular cracks or fractures deep underground, so geothermal engineers must have a detailed understanding of the underlying geology and the location and orientation of those fractures. This is where DNA and advanced nanoparticle technology enter the geothermal picture.

"Currently, reservoir fracture networks are still poorly known despite advances in seismic imaging, tracer testing, and other imaging and sensing technologies," said study first author Zhang, graduate student at Stanford's School of Earth, Energy and Environmental Sciences.

"Nanotracers are able to carry much more information about the reservoir, from temperature distribution to fracture geometry," Zhang continued.

Medical researchers have experimented with medications encapsulated within nanoparticles that circulate throughout the human body and melt or open at a certain temperature. While the temperatures inside Earth are much higher, the geothermal nanotracers essentially work in the same way, allowing researchers to better map the underground heat sources.

When reservoir engineers inject tracers into a geothermal field to map it, they do so at multiple sites spread out across a relatively large area. Currently, when the particles pop back up in other wells, it is nearly impossible to determine which well they started from. This limits the critical information needed to better harness the geothermal energy.

"Adding DNA to the nanotracers largely resolves this issue," Zhang said. "DNA has a nearly infinite number of sequences. By encoding each batch of tracers with a unique DNA signature, we could get a much clearer picture of the temperature distribution and fracture geometry that we need."

In the study, Zhang and her team embedded synthetically derived DNA molecules between silica nanoparticles and an additional silica shell. They then injected these particles through packed sand at various temperatures to see if the unique DNA tags and silica shells survived the journey, analogous to what they might experience in the field.

"We were surprised to find that the particles could survive temperatures as high at 302 degrees Fahrenheit (150 degrees C), meaning that they could possibly survive the extreme environments of geothermal fields," Zhang said.

While currently developed geothermal fields could benefit from a better understanding of the subsurface, the future of geothermal power likely lies in enhanced geothermal systems, where humans inject water underground to fracture the rock.

"The results from this initial study represent a significant step toward our goal of characterizing geothermal resources that are presently difficult to exploit," said study coauthor Roland Horne, the director of the Stanford Geothermal Program.

"Each enhanced geothermal system is unique based on the underlying geology and fracture geometry," Horne said. "To develop those systems properly, we will need to know how those fractures join together and how the temperature field is distributed. DNA-embedded nanotracers could be a powerful tool that would help realize geothermal energy's global potential."

Conservative estimates indicate that geothermal energy might, one day, provide 5 percent of the world's power supply if enhanced geothermal systems can be optimized. While that number might sound small, Horne and Zhang see geothermal playing an important role in our energy future.

"Five percent of 22,000 billion kilowatt hours is still a lot of energy," Horne said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stanford's School of Earth, Energy and Environmental Sciences
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Physicists gain new view of superconductor
Binghamton NY (SPX) Apr 18, 2016
An international team of physicists has directly observed some unique characteristics of a superconductor for the first time, according to a paper published Wednesday in the journal Nature. Michael Lawler, a theoretical physicist at Binghamton University, contributed to the research, which he considers a great achievement for the experimentalists on the team. The researchers use a very sma ... read more


ENERGY TECH
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

ENERGY TECH
Rover mini-walkabout to find clay mineral continues

Russia, Italy plan first bid to explore beneath mars surface in 2018

First light for ExoMars

First joint EU-Russian ExoMars mission to reach Mars orbit Oct 16

ENERGY TECH
NASA blasts Orion Service Module with giant horns

Concept's success buoys Commercial Crew's path to flight

New, fast solar wind propulsion system is aim of NASA, UAH study

China, India pave the way to BRICS cooperation in space

ENERGY TECH
Chinese scientists develop mammal embryos in space for first time

Re-entry capsule of SJ-10 lands in Northern China

China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

ENERGY TECH
BEAM successfully installed to the International Space Station

NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

Russian cargo ship docks successfully with space station

ENERGY TECH
Arianespace cooperation with Russia remains smooth amid sanctions

Orbital ATK awarded major sounding rocket contract by NASA

SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

ENERGY TECH
Lone planetary-mass object found in family of stars

University of Massachusetts Lowell PICTURE-B Mission Completed

Stars strip away atmospheres of nearby super-Earths

1917 astronomical plate has first-ever evidence of exoplanetary system

ENERGY TECH
Generation of tailored magnetic materials

Using methane rather than flaring it

Progress of simulating dynamics in heterogeneous materials

A laser for your eyes









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.