. 24/7 Space News .
ROBO SPACE
'Spring-mass' technology heralds the future of walking robots
by Staff Writers
Corvallis OR (SPX) Oct 29, 2015


Engineers at Oregon State University have successfully field tested their walking robot, ATRIAS. Image courtesy Oregon State University. For a larger version of this image please go here.

A study by engineers at Oregon State University suggests that they have achieved the most realistic robotic implementation of human walking dynamics that has ever been done, which may ultimately allow human-like versatility and performance.

The system is based on a concept called "spring-mass" walking that was theorized less than a decade ago, and combines passive dynamics of a mechanical system with computer control. It provides the ability to blindly react to rough terrain, maintain balance, retain an efficiency of motion and essentially walk like humans do.

As such, this approach to robots that can walk and run like humans opens the door to entire new industries, jobs and mechanized systems that do not today exist.

The findings on spring-mass walking have been reported for the first time in IEEE Transactions on Robotics, by engineers from OSU and Germany. The work has been supported by the National Science Foundation, the Defense Advanced Research Projects Agency and the Human Frontier Science Program.

The technologies developed at OSU have evolved from intense studies of both human and animal walking and running, to learn how animals achieve a fluidity of motion with a high degree of energy efficiency. Animals combine a sensory input from nerves, vision, muscles and tendons to create locomotion that researchers have now translated into a working robotic system.

The system is also efficient. Studies done with their ATRIAS robot model, which incorporates the spring-mass theory, showed that it's three times more energy-efficient than any other human-sized bipedal robots.

"I'm confident that this is the future of legged robotic locomotion," said Jonathan Hurst, an OSU professor of mechanical engineering and director of the Dynamic Robotics Laboratory in the OSU College of Engineering.

"We've basically demonstrated the fundamental science of how humans walk," he said.

"Other robotic approaches may have legs and motion, but don't really capture the underlying physics," he said. "We're convinced this is the approach on which the most successful legged robots will work. It retains the substance and science of legged animal locomotion, and animals demonstrate performance that far exceeds any other approach we've seen. This is the way to go."

The current technology, Hurst said, is still a crude illustration of what the future may hold. When further refined and perfected, walking and running robots may work in the armed forces. As fire fighters they may charge upstairs in burning buildings to save lives. They could play new roles in factories or do ordinary household chores.

Aspects of the locomotion technology may also assist people with disabilities, the researchers said.

"Robots are already used for gait training, and we see the first commercial exoskeletons on the market," said Daniel Renjewski, the lead author on the study with the Technische Universitat Munchen. "However, only now do we have an idea how human-like walking works in a robot. This enables us to build an entirely new class of wearable robots and prostheses that could allow the user to regain a natural walking gait."

There are few limits to this technology, the researchers said.

"It will be some time, but we think legged robots will enable integration of robots into our daily lives," Hurst said. "We know it is possible, based on the example of animals. So it's inevitable that we will solve the problem with robots. This could become as big as the automotive industry."

And much of this, the scientists said, will be based on the "spring-mass" concept, which animals have been perfecting through millions of years of evolution.

The robots being constructed at OSU were designed to mimic this "spring-legged" action of bipedal animals. With minor variations, muscles, tendons and bones form a structure that exhibits most of the required behavior, and conscious control just nudges things a little to keep it going in the right direction. The effort is smooth and elastic, and once understood, can be simulated in walking robots by springs and other technology.

ATRIAS, the human-sized robot most recently created at OSU, has six electric motors powered by a lithium polymer battery about the size of a half-gallon of milk, which is substantially smaller than the power packs of some other mobile robots. It can take impacts and retain its balance. It can walk over rough and bumpy terrain.

Researchers said in their new study that this technology "has the potential to enhance legged robots to ultimately match the efficiency, agility and robustness of animals over a wide variety of terrain."

In continued research, work will be done to improve steering, efficiency, leg configuration, inertial actuation, robust operation, external sensing, transmissions and actuators, and other technologies.

Other collaborators in the development of this technology have included Jessy Grizzle at the University of Michigan and Hartmut Geyer at Carnegie Mellon University. Scientific work on the motion of animals was done with Monica Daley at the Royal Veterinary College, which guided the robot's development.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oregon State University
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
Dive of the RoboBee
Boston MA (SPX) Oct 23, 2015
In 1939, a Russian engineer proposed a "flying submarine" - a vehicle that can seamlessly transition from air to water and back again. While it may sound like something out of a James Bond film, engineers have been trying to design functional aerial-aquatic vehicles for decades with little success. Now, engineers may be one step closer to the elusive flying submarine. The biggest challenge ... read more


ROBO SPACE
All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

Study reveals origin of organic matter in Apollo lunar samples

Russia touts plan to land a man on the Moon by 2029

ROBO SPACE
Martian skywatchers provide insight on atmosphere, protect orbiting hardware

Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

ROBO SPACE
Charles Elachi to retire as JPL Director

From science fiction to reality - sonic tractor beam invented

Study solves mysteries of Voyager 1's journey into interstellar space

NASA Marks Completion of Test Version of Key SLS Propulsion System

ROBO SPACE
The Last Tiangong

China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

ROBO SPACE
NASA astronauts get workout in marathon spacewalk

Between the Ears: International Space Station Examines the Human Brain

High-Tech Methods Study Bacteria on the International Space Station

Astronaut Scott Kelly to break US spaceflight record

ROBO SPACE
Initial launcher assembly is completed for Arianespace's Vega mission with LISA Pathfinder

Ariane 5 is delivered for Arianespace's sixth heavy-lift mission of 2015

ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

ROBO SPACE
Spirals in dust around young stars may betray presence of massive planets

The Exoplanet Era

Scientists Predict that Rocky Planets Formed from "Pebbles"

NASA's K2 Finds Dead Star Vaporizing a Mini 'Planet'

ROBO SPACE
Ants: Both solid-like and liquid-like

Coating cancels acoustic scattering from odd-shaped objects

Nanoquakes probe new 2-dimensional material

Scientists gain insight into origin of tungsten-ditelluride's magnetoresistance









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.