. 24/7 Space News .
CHIP TECH
Spin-resolved oscilloscope for charge and spin signals
by Staff Writers
Tokyo, Japan (SPX) Mar 15, 2017


The spin-resolved oscilloscope is established by combining spintronic and plasmonic devices, i.e., a spin filter and time-resolved charge detectors. Image courtesy Masayuki Hashisaka.

Researchers at the Tokyo Institute of Technology and Nippon Telegraph and Telephone Corporation have developed a "spin-resolved oscilloscope." This device is a basic measuring instrument for plasmonics and spintronics, which are key technologies for future electronics applications.

The coupling of light and electronic charges in plasmonics will pave the way for ultra-high-speed information processing, whereas spintronics will provide low-energy-consumption technology in a highly information-oriented society. The spin-resolved oscilloscope pioneers future "spin-plasmonics," where ultra-high-speed low-energy-consumption devices will be achieved.

An electron has charge and spin, and both the charge- and spin-density excitations in an electronic system can be utilized in information processing. The dynamics of charge-density waves has been investigated in plasmonics, and that of spin-density waves has been studied in the field of spintronics.

However, less effort has been devoted to combining these two technologies and to developing the expected ultra-high-speed and low-energy-consumption devices. To date, a major obstacle preventing the promotion of this research field has been the lack of a measuring instrument that is sensitive to both charge and spin.

In their recent paper, published in Nature Physics, Dr. Masayuki Hashisaka at Tokyo Tech and colleagues reported a "spin-resolved oscilloscope" that enables measurement of the waveforms of both charge and spin signals in electronic devices. An oscilloscope is a basic measuring instrument used in electronics; however, conventional oscilloscopes do not facilitate both charge and spin measurement.

The "charge signal" is the total charge of the spin-up and -down electron densities. Further, the "spin signal" is the difference between the spin-up and -down electron densities. Both these signals traveling in a semiconductor device can be detected by the spin-resolved oscilloscope, which is composed of a spin filter and nanometer-scale time-resolved charge detectors.

The spin filter separates the spin-up and -down electrons, while the time-resolved charge detector measures the waveforms of the charge-density waves. By combining these spintronic and plasmonic devices, the spin-resolved oscilloscope is established.

Using this spin-resolved oscilloscope, Hashisaka and colleagues demonstrated waveform measurements of charge- and spin-density wavepackets in a semiconductor device. They succeeded in observing the spin-charge-separation process in a one-dimensional (1D) electronic system composed of quantum Hall edge channels, which is a prototypical system for the investigation of 1D electron dynamics.

This was the first experiment in which a single spin-charge-separation waveform measurement allowed estimation of all the relevant system parameters. Further, this observation manifests not only the usefulness of the spin-resolved oscilloscope, but also the possibility for developing novel plasmonic and spintronic devices based on 1D semiconductor materials.

The spin-resolved oscilloscope will promote investigations in both plasmonics and spintronics; for example, this device will aid studies of electron dynamics in various 1D systems. In addition, the spin-resolved oscilloscope will pave the way for future "spin-plasmonics," where ultra-high-speed and low-energy-consumption devices will be achieved.

Research paper

CHIP TECH
The prototype of a chemical computer detects a sphere
Warsaw, Poland (SPX) Mar 13, 2017
Chemical computers are becoming ever more of a reality - this is being proven by scientists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw. It turns out that after an appropriate teaching procedure even a relatively simple chemical system can perform non-trivial operations. In their most recent computer simulations researchers have shown that correctly progr ... read more

Related Links
Tokyo Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Visions of the Future: Planetary Exploration Through 2050

Campaign Tests Parachutes Designed to Provide Astronauts a Soft Landing

International space docking standard updated

ECLSS Put to the Test for Commercial Crew Missions

CHIP TECH
Kennedy's Multi-User Spaceport Streamlines Commercial Launches

SpaceX launches EchoStar XXIII comms satellite into orbit

Designing new rocket engines that don't blow up

Space squadron supports record-breaking satellites launch

CHIP TECH
Mars Rover Tests Driving, Drilling and Detecting Life in Chile's High Desert

Opportunity Driving South to Gully

NASA Mars Orbiter Tracks Back-to-Back Regional Storms

Paleolake deposits on Mars might look like sediments in Indonesia

CHIP TECH
China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

Riding an asteroid: China's next space goal

CHIP TECH
A Consolidated Intelsat and OneWeb

Kymeta and Intelsat announce new service to revolutionize how satellite services are purchased

UK funding space entrepreneurs

ISRO Makes More Space for Private Sector Participation in Satellite Making

CHIP TECH
MIPT physicists predict the existence of unusual optical composites

New application of the selective laser melting method

Scientists develop new surface finishing for 3D-printing

Dramatic improvement in surface finishing of 3-D printing

CHIP TECH
Light From An Ultra-Cool Neighbor

Gigantic Jupiter-type planet reveals insights into how planets evolve

Mutants in Microgravity

Could fast radio bursts be powering alien probes

CHIP TECH
NASA Mission Named 'Europa Clipper'

Juno Captures Jupiter Cloudscape in High Resolution

Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.