Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




STELLAR CHEMISTRY
Spectral 'ruler' is first standardized way to measure stars
by Staff Writers
Cambridge, UK (SPX) Jul 08, 2014


The first standardized way to measure stars has been developed for Gaia mission. Image courtesy Amanda Smith/Cambridge Institute of Astronomy.

Previously, as with the longitude problem 300 years earlier for fixing locations on Earth, there was no unified system of reference for calibrating the heavens. But now, when investigating the atmospheric structure and chemical make-up of stars, astronomers can use a new stellar scale as a 'ruler' - making it much easier for them to classify and compare data on star discoveries.

In fact, the work is a critical first step in the Gaia satellite's mission to map the Milky Way, as the unprecedented levels of stellar data that will result need "consistent stellar parameters", the same way we need values to measure everything from temperature to time, say astronomers.

The guidelines are free to download and are already being used by the world's largest astronomy projects. The work has recently been published in the journal Astronomy and Astrophysics.

The team, including Dr Paula Jofre from the University of Cambridge's Institute of Astronomy, selected 34 initial 'benchmark' stars to represent the different kinds of stellar populations in our galaxy, such as hot stars, cold stars, red giants and dwarfs, as well as stars that cover the different chemical patterns - or 'metallicity' - in their spectrum, as this is the "cosmic clock" which allows astronomers to read a star's age.

This detailed range of information on the 34 stars form the first value set for measuring the millions of stars Gaia aims to catalogue. Many of the benchmark stars can be seen with the human eye, and have been studied for most of human history - dating back to the very first astronomical records from ancient Babylon.

"We took stars which had been measured a lot so the parameters are very well-known, but needed to be brought to the same scale for the new benchmark - essentially, using the stars we know most about to help measure the stars we know nothing about," said Jofre.

"In previous galactic studies, the Sun is used as the standard to show a method is working, along with a few other well-known stars. But I choose this one because it works for my method, you choose a different one for different reasons; data may not match.

"This is the first attempt to cover a wide range of stellar classifications, and do everything from the beginning - methodically and homogenously."

Launched at the end of last year, Gaia will gather data on over a billion stars in the Milky Way, allowing astronomers to study for the first time in close detail its myriad stars and planetary systems. Petabytes of data will be sent back to Earth - roughly the equivalent of all the information held in all the libraries of the world today.

The new value system was needed to ensure that analysis of this extraordinary amount of data is done in the most effective and efficient way, a template to measure the vast stream of data against.

Jofre focused on spectroscopic data to work out metallicity: the chemical combination that makes up a star. Just as a raindrop can split sunlight into the colours of the rainbow, spectroscopes split the light from a star into its chemical elements - and the results can be read like a musical score, with high notes or low notes in the scale giving clues as to the star's age. On average, the higher a star's metal content the younger it is.

Jofre created a 'spectral' library, combining the best data on the atmospheric structure of benchmark stars to determine a uniform scale for metallicity. Together with definitive scales for the stars' temperatures and surface gravities, produced with colleagues at the University of Uppsala and the University of Bordeaux, her work completes the measuring system that will be used to gauge data from Gaia.

"Now this set of data scales for the benchmark stars can be used as a way of making definitive measurements of others stars - invaluable to astronomers working on a wide range of projects," Jofre said.

The benchmark stars are already being used as a standardising model by Gaia's sister project, the Gaia-ESO survey, which is observing stellar spectra at a high resolution from the Very Large Telescope in Chile. They will also provide the basis for the thousands of reference stars needed to set the parameters for the hugely ambitious Gaia satellite once it starts mapping the entire galaxy - the "pillars for the enormous calibrators".

The fact that the ideal benchmark stars needed to be ones we already have a lot of data on means that many are bright and relatively near to the Earth - and have been the subject of wonder across civilisations.

Aldebaran, Arcturus, Pollux, Procyon and Alpha Centauri have played a part in the culture and mythology of mankind since they were first identified thousands of years ago. Babylonian astronomers used them as a reference point to describe the positions of the moon and planets as they moved through the night sky, appearing in the Babylonian Astronomical Diaries dating back to almost 1000 years BC.

"Many people interested in astronomy know these stars, their position in constellations, and the best time of year to see them. It is amazing that there is still so much to learn about the physics of these most well-known stars," said Dr. Ulrike Heiter from the Uppsala University. "While stars do move over millennia, for humans they are fixed points - used to navigate the Earth for centuries. We are still using them as fixed points, but this time for navigating the galaxy," Jofre said.

UK Gaia lead Professor Gerry Gilmore added: "Advances in understanding the history and structure of our Galaxy with ambitious projects are possible only because, like Newton, we see farther by standing on the shoulders of giants. For reliably determining what chemical elements the stars are made of, those giants are the benchmark stars. All our vastly expanding knowledge depends on really understanding the few."

.


Related Links
University of Cambridge
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Hubble Finds Dwarf Galaxies Formed Large Share of Universe's Stars
Washington DC (SPX) Jun 20, 2014
They may be little, but they pack a big star-forming punch. New observations from NASA's Hubble Space Telescope show small galaxies, also known as dwarf galaxies, are responsible for forming a large proportion of the universe's stars. Studying this early epoch of the universe's history is critical to fully understanding how these stars formed and how galaxies grew and evolved 3.5 to 6 bill ... read more


STELLAR CHEMISTRY
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

STELLAR CHEMISTRY
Rover Uses Arm to Study Several Rocks and Takes Panoramic Images

ADS complete heat shields for 2016 ExoMars mission

Martian salts must touch ice to make liquid water

First LDSD Test Flight a Success

STELLAR CHEMISTRY
Sun Sends More 'Tsunami Waves' to Voyager 1

Privately funded solar spacecraft to launch in 2016

Space Launch System Core Stage Passes Critical Design Review

Taiwan's tourism revenue hits record high in 2013

STELLAR CHEMISTRY
Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

STELLAR CHEMISTRY
Orbital Targets July 11 For ISS Commercial Resupply Mission

Space junk damages ISS US segment

NASA Television Coverage Set for Orbital-2 Mission to Space Station

Spot the Space Station looking at you

STELLAR CHEMISTRY
RUAG Space wins major Ariane 5 payload fairing contract

Final ATV loaded with cargo after integration on Ariane 5

Russia Launches Rokot Carrier Rocket with Three Satellites

Eco-Friendly 'Angara' Rocket Installed On Plesetsk Launch Pad

STELLAR CHEMISTRY
Newfound Frozen World Orbits in Binary Star System

Discovery expands search for Earth-like planets

Astronomers discover most Earth-like of all exoplanets

Mega-Earth in Draco Smashes Notions of Planetary Formation

STELLAR CHEMISTRY
ASC Signal Introduces Innovative Carbon-Fiber Antenna

Resolve Supplies Zoom Lenses for NASA Testing

With 'ribbons' of graphene, width matters

Even geckos can lose their grip




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.