|
. | . |
|
by Staff Writers Washington DC (SPX) Jun 20, 2014
They may be little, but they pack a big star-forming punch. New observations from NASA's Hubble Space Telescope show small galaxies, also known as dwarf galaxies, are responsible for forming a large proportion of the universe's stars. Studying this early epoch of the universe's history is critical to fully understanding how these stars formed and how galaxies grew and evolved 3.5 to 6 billion years after the beginning of the universe. The result supports a decade-long investigation into whether there is a link between a galaxy's mass and its star-forming activity, and helps paint a consistent picture of events in the early universe. "We already suspected these kinds of galaxies would contribute to the early wave of star formation, but this is the first time we've been able to measure the effect they actually had," said Hakim Atek of the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, lead author of the study published in the June 19 online issue of The Astrophysical Journal. "They appear to have had a surprisingly huge role to play." Previous studies of star-forming galaxies were restricted to the analysis of mid- or high-mass galaxies, leaving out the numerous dwarf galaxies that existed in this era of prolific star formation. Astronomers conducted a recent study using data from Hubble's Wide Field Camera 3 (WFC3) to take a further and significant step forward in understanding this formative era by examining a sample of starburst galaxies in the young universe. Starburst galaxies form stars at a furiously fast rate, far above what is considered by experts to be a normal rate of star formation. The infrared capabilities of WFC3 have allowed astronomers to finally calculate how much these low-mass dwarf galaxies contributed to the star population in our universe. "These galaxies are forming stars so quickly they could actually double their entire mass of stars in only 150 million years -- an incredibly short astronomical timescale," adds co-author Jean-Paul Kneib, also of EPFL. Researchers say such massive growth would take most "normal" galaxies 1 to 3 billion years. In addition to adding new insight to how and where the stars in our universe formed, this latest finding may also help to unravel the secrets of galactic evolution. Galaxies evolve through a jumble of complex processes. As galaxies merge, they are consumed by newly-formed stars that feed on their combined gases, and exploding stars and supermassive black holes emit galactic material - a process that depletes the mass of a galaxy. It is unusual to find a galaxy in a state of starburst, which suggests to researchers starburst galaxies are the result of an unusual incident in the past, such as a violent merger.
Related Links Hubble Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |